These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
365 related articles for article (PubMed ID: 22141887)
1. Biomechanics of swimming in the pufferfish Diodon holocanthus: propulsive momentum enhancement is an adaptation for thrust production in an undulatory median and paired-fin swimmer. Blake RW; Chan KH J Fish Biol; 2011 Dec; 79(7):1774-94. PubMed ID: 22141887 [TBL] [Abstract][Full Text] [Related]
2. Median fin function in bluegill sunfish Lepomis macrochirus: streamwise vortex structure during steady swimming. Tytell ED J Exp Biol; 2006 Apr; 209(Pt 8):1516-34. PubMed ID: 16574809 [TBL] [Abstract][Full Text] [Related]
3. Hydrodynamic fin function of brief squid, Lolliguncula brevis. Stewart WJ; Bartol IK; Krueger PS J Exp Biol; 2010 Jun; 213(Pt 12):2009-24. PubMed ID: 20511514 [TBL] [Abstract][Full Text] [Related]
4. Locomotor function of the dorsal fin in rainbow trout: kinematic patterns and hydrodynamic forces. Drucker EG; Lauder GV J Exp Biol; 2005 Dec; 208(Pt 23):4479-94. PubMed ID: 16339868 [TBL] [Abstract][Full Text] [Related]
5. The hydrodynamics of ribbon-fin propulsion during impulsive motion. Shirgaonkar AA; Curet OM; Patankar NA; Maciver MA J Exp Biol; 2008 Nov; 211(Pt 21):3490-503. PubMed ID: 18931321 [TBL] [Abstract][Full Text] [Related]
6. Hydrodynamic function of dorsal and anal fins in brook trout (Salvelinus fontinalis). Standen EM; Lauder GV J Exp Biol; 2007 Jan; 210(Pt 2):325-39. PubMed ID: 17210968 [TBL] [Abstract][Full Text] [Related]
7. A hydrodynamic analysis of fish swimming speed: wake structure and locomotor force in slow and fast labriform swimmers. Drucker EG; Lauder GV J Exp Biol; 2000 Aug; 203(Pt 16):2379-93. PubMed ID: 10903153 [TBL] [Abstract][Full Text] [Related]
8. Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis: evidence of multiple jet 'modes' and their implications for propulsive efficiency. Bartol IK; Krueger PS; Stewart WJ; Thompson JT J Exp Biol; 2009 Jun; 212(Pt 12):1889-903. PubMed ID: 19483007 [TBL] [Abstract][Full Text] [Related]
9. Escaping Flatland: three-dimensional kinematics and hydrodynamics of median fins in fishes. Tytell ED; Standen EM; Lauder GV J Exp Biol; 2008 Jan; 211(Pt 2):187-95. PubMed ID: 18165246 [TBL] [Abstract][Full Text] [Related]
10. The effect of fin ray flexural rigidity on the propulsive forces generated by a biorobotic fish pectoral fin. Tangorra JL; Lauder GV; Hunter IW; Mittal R; Madden PG; Bozkurttas M J Exp Biol; 2010 Dec; 213(Pt 23):4043-54. PubMed ID: 21075946 [TBL] [Abstract][Full Text] [Related]
11. Non-invasive measurement of instantaneous forces during aquatic locomotion: a case study of the bluegill sunfish pectoral fin. Peng J; Dabiri JO; Madden PG; Lauder GV J Exp Biol; 2007 Feb; 210(Pt 4):685-98. PubMed ID: 17267654 [TBL] [Abstract][Full Text] [Related]
12. Undulating fins produce off-axis thrust and flow structures. Neveln ID; Bale R; Bhalla AP; Curet OM; Patankar NA; MacIver MA J Exp Biol; 2014 Jan; 217(Pt 2):201-13. PubMed ID: 24072799 [TBL] [Abstract][Full Text] [Related]
13. Hydrodynamic function of dorsal fins in spiny dogfish and bamboo sharks during steady swimming. Maia A; Lauder GV; Wilga CD J Exp Biol; 2017 Nov; 220(Pt 21):3967-3975. PubMed ID: 28883085 [TBL] [Abstract][Full Text] [Related]
14. Robotic device shows lack of momentum enhancement for gymnotiform swimmers. English I; Liu H; Curet OM Bioinspir Biomim; 2019 Jan; 14(2):024001. PubMed ID: 30562723 [TBL] [Abstract][Full Text] [Related]
15. Function of pectoral fins in rainbow trout: behavioral repertoire and hydrodynamic forces. Drucker EG; Lauder GV J Exp Biol; 2003 Mar; 206(Pt 5):813-26. PubMed ID: 12547936 [TBL] [Abstract][Full Text] [Related]
16. Hydrodynamics of caudal fin locomotion by chub mackerel, Scomber japonicus (Scombridae). Nauen JC; Lauder GV J Exp Biol; 2002 Jun; 205(Pt 12):1709-24. PubMed ID: 12042330 [TBL] [Abstract][Full Text] [Related]
17. Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles. Blake RW; Ng H; Chan KH; Li J Bioinspir Biomim; 2008 Sep; 3(3):034002. PubMed ID: 18626130 [TBL] [Abstract][Full Text] [Related]
18. Functional morphology of the pectoral fins in bamboo sharks, Chiloscyllium plagiosum: benthic vs. pelagic station-holding. Wilga CD; Lauder GV J Morphol; 2001 Sep; 249(3):195-209. PubMed ID: 11517464 [TBL] [Abstract][Full Text] [Related]
19. Fish biorobotics: kinematics and hydrodynamics of self-propulsion. Lauder GV; Anderson EJ; Tangorra J; Madden PG J Exp Biol; 2007 Aug; 210(Pt 16):2767-80. PubMed ID: 17690224 [TBL] [Abstract][Full Text] [Related]
20. Hydrodynamic study of freely swimming shark fish propulsion for marine vehicles using 2D particle image velocimetry. Babu MN; Mallikarjuna JM; Krishnankutty P Robotics Biomim; 2016; 3():3. PubMed ID: 27077022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]