These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22142629)

  • 1. Human health risks from mercury exposure from broken compact fluorescent lamps (CFLs).
    Nance P; Patterson J; Willis A; Foronda N; Dourson M
    Regul Toxicol Pharmacol; 2012 Apr; 62(3):542-52. PubMed ID: 22142629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating human indoor exposure to elemental mercury from broken compact fluorescent lamps (CFLs).
    Salthammer T; Uhde E; Omelan A; Lüdecke A; Moriske HJ
    Indoor Air; 2012 Aug; 22(4):289-98. PubMed ID: 22188528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exposure analysis of accidental release of mercury from compact fluorescent lamps (CFLs).
    Sarigiannis DA; Karakitsios SP; Antonakopoulou MP; Gotti A
    Sci Total Environ; 2012 Oct; 435-436():306-15. PubMed ID: 22863806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry.
    Rey-Raap N; Gallardo A
    Waste Manag; 2012 May; 32(5):944-8. PubMed ID: 22206740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A human health risk assessment of mercury species in soil and food around compact fluorescent lamp factories in Zhejiang Province, PR China.
    Shao DD; Wu SC; Liang P; Kang Y; Fu WJ; Zhao KL; Cao ZH; Wong MH
    J Hazard Mater; 2012 Jun; 221-222():28-34. PubMed ID: 22575176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A time-dependent risk assessment for broken compact fluorescent lamps.
    Clear R; Rubinstein F
    Risk Anal; 2014 Oct; 34(10):1957-67. PubMed ID: 24975461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercury vapor release from broken compact fluorescent lamps and in situ capture by new nanomaterial sorbents.
    Johnson NC; Manchester S; Sarin L; Gao Y; Kulaots I; Hurt RH
    Environ Sci Technol; 2008 Aug; 42(15):5772-8. PubMed ID: 18754507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and recovery of mercury from spent fluorescent lamps.
    Jang M; Hong SM; Park JK
    Waste Manag; 2005; 25(1):5-14. PubMed ID: 15681174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preventing mercury vapor release from broken fluorescent lamps during shipping.
    Glenz TT; Brosseau LM; Hoffbeck RW
    J Air Waste Manag Assoc; 2009 Mar; 59(3):266-72. PubMed ID: 19320265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental and human exposure assessment monitoring of communities near an abandoned mercury mine in the Philippines: a toxic legacy.
    Maramba NP; Reyes JP; Francisco-Rivera AT; Panganiban LC; Dioquino C; Dando N; Timbang R; Akagi H; Castillo MT; Quitoriano C; Afuang M; Matsuyama A; Eguchi T; Fuchigami Y
    J Environ Manage; 2006 Oct; 81(2):135-45. PubMed ID: 16949727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compact fluorescent lighting in Wisconsin: elevated atmospheric emission and landfill deposition post-EISA implementation.
    Arendt JD; Katers JF
    Waste Manag Res; 2013 Jul; 31(7):764-72. PubMed ID: 23635464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential environmental impacts from the metals in incandescent, compact fluorescent lamp (CFL), and light-emitting diode (LED) bulbs.
    Lim SR; Kang D; Ogunseitan OA; Schoenung JM
    Environ Sci Technol; 2013 Jan; 47(2):1040-7. PubMed ID: 23237340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nano-selenium reactive barrier approach for managing mercury over the life-cycle of compact fluorescent lamps.
    Lee B; Sarin L; Johnson NC; Hurt RH
    Environ Sci Technol; 2009 Aug; 43(15):5915-20. PubMed ID: 19731697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential mercury emissions from fluorescent lamps production and obsolescence in mainland China.
    Tan Q; Li J
    Waste Manag Res; 2016 Jan; 34(1):67-74. PubMed ID: 26628052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human health risk assessment of synthetic turf fields based upon investigation of five fields in Connecticut.
    Ginsberg G; Toal B; Simcox N; Bracker A; Golembiewski B; Kurland T; Hedman C
    J Toxicol Environ Health A; 2011; 74(17):1150-74. PubMed ID: 21797769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photobiological safety of the recently introduced energy efficient household lamps.
    Necz PP; Bakos J
    Int J Occup Med Environ Health; 2014 Dec; 27(6):1036-42. PubMed ID: 25519943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life-cycle flow of mercury and recycling scenario of fluorescent lamps in Japan.
    Asari M; Fukui K; Sakai S
    Sci Total Environ; 2008 Apr; 393(1):1-10. PubMed ID: 18237763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acrodynia: exposure to mercury from fluorescent light bulbs.
    Tunnessen WW; McMahon KJ; Baser M
    Pediatrics; 1987 May; 79(5):786-9. PubMed ID: 3575038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury risk from fluorescent lamps in China: current status and future perspective.
    Hu Y; Cheng H
    Environ Int; 2012 Sep; 44():141-50. PubMed ID: 22321538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Does biological monitoring of mercury make sense after breakage of compact fluorescent lamps?].
    Schierl R; Böhlandt A; Nowak D
    Dtsch Med Wochenschr; 2011 May; 136(18):973-4. PubMed ID: 21472644
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.