BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 22142759)

  • 21. Comparison of cerebral activity during teeth clenching and fist clenching: a functional magnetic resonance imaging study.
    Iida T; Kato M; Komiyama O; Suzuki H; Asano T; Kuroki T; Kaneda T; Svensson P; Kawara M
    Eur J Oral Sci; 2010 Dec; 118(6):635-41. PubMed ID: 21083626
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Maximal lengthening contractions increase p70 S6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supply.
    Eliasson J; Elfegoun T; Nilsson J; Köhnke R; Ekblom B; Blomstrand E
    Am J Physiol Endocrinol Metab; 2006 Dec; 291(6):E1197-205. PubMed ID: 16835402
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sex and performance level effects on brain activation during a verbal fluency task: a functional magnetic resonance imaging study.
    Gauthier CT; Duyme M; Zanca M; Capron C
    Cortex; 2009 Feb; 45(2):164-76. PubMed ID: 19150518
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A topography of executive functions and their interactions revealed by functional magnetic resonance imaging.
    Fassbender C; Murphy K; Foxe JJ; Wylie GR; Javitt DC; Robertson IH; Garavan H
    Brain Res Cogn Brain Res; 2004 Jul; 20(2):132-43. PubMed ID: 15183386
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The selection of intended actions and the observation of others' actions: a time-resolved fMRI study.
    Cunnington R; Windischberger C; Robinson S; Moser E
    Neuroimage; 2006 Feb; 29(4):1294-302. PubMed ID: 16246592
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fatigue induced by intermittent maximal voluntary contractions is associated with significant losses in muscle output but limited reductions in functional MRI-measured brain activation level.
    Liu JZ; Zhang L; Yao B; Sahgal V; Yue GH
    Brain Res; 2005 Apr; 1040(1-2):44-54. PubMed ID: 15804425
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diurnal patterns of activity of the orienting and executive attention neuronal networks in subjects performing a Stroop-like task: a functional magnetic resonance imaging study.
    Marek T; Fafrowicz M; Golonka K; Mojsa-Kaja J; Oginska H; Tucholska K; Urbanik A; Beldzik E; Domagalik A
    Chronobiol Int; 2010 Jul; 27(5):945-58. PubMed ID: 20636208
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for premotor cortex activity during dynamic visuospatial imagery from single-trial functional magnetic resonance imaging and event-related slow cortical potentials.
    Lamm C; Windischberger C; Leodolter U; Moser E; Bauer H
    Neuroimage; 2001 Aug; 14(2):268-83. PubMed ID: 11467902
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the neural basis of focused and divided attention.
    Nebel K; Wiese H; Stude P; de Greiff A; Diener HC; Keidel M
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):760-76. PubMed ID: 16337110
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Motor control and kinetics during low level concentric and eccentric contractions in man.
    Søgaard K; Christensen H; Jensen BR; Finsen L; Sjøgaard G
    Electroencephalogr Clin Neurophysiol; 1996 Oct; 101(5):453-60. PubMed ID: 8913200
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of activated regions during a language task.
    De Carli D; Garreffa G; Colonnese C; Giulietti G; Labruna L; Briselli E; Ken S; Macrì MA; Maraviglia B
    Magn Reson Imaging; 2007 Jul; 25(6):933-8. PubMed ID: 17524589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Brain areas involved in interlimb coordination: a distributed network.
    Debaere F; Swinnen SP; Béatse E; Sunaert S; Van Hecke P; Duysens J
    Neuroimage; 2001 Nov; 14(5):947-58. PubMed ID: 11697927
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in cerebral activations during movement execution and imagery after parietal cortex TMS interleaved with 3T MRI.
    de Vries PM; de Jong BM; Bohning DE; Walker JA; George MS; Leenders KL
    Brain Res; 2009 Aug; 1285():58-68. PubMed ID: 19523932
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Concentric and eccentric muscle fatigue of the shoulder rotators.
    Mullaney MJ; McHugh MP
    Int J Sports Med; 2006 Sep; 27(9):725-9. PubMed ID: 16586324
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prolonged reaction time to a verbal working memory task predicts increased power of posterior parietal cortical activation.
    Honey GD; Bullmore ET; Sharma T
    Neuroimage; 2000 Nov; 12(5):495-503. PubMed ID: 11034857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Central fatigue and motor cortical excitability during repeated shortening and lengthening actions.
    Löscher WN; Nordlund MM
    Muscle Nerve; 2002 Jun; 25(6):864-72. PubMed ID: 12115976
    [TBL] [Abstract][Full Text] [Related]  

  • 37. fMRI reveals two distinct cerebral networks subserving speech motor control.
    Riecker A; Mathiak K; Wildgruber D; Erb M; Hertrich I; Grodd W; Ackermann H
    Neurology; 2005 Feb; 64(4):700-6. PubMed ID: 15728295
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Representation of somatosensory inputs within the cortical autonomic network.
    Goswami R; Frances MF; Shoemaker JK
    Neuroimage; 2011 Jan; 54(2):1211-20. PubMed ID: 20884359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Attention to intention.
    Lau HC; Rogers RD; Haggard P; Passingham RE
    Science; 2004 Feb; 303(5661):1208-10. PubMed ID: 14976320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Specific versus nonspecific brain activity in a parametric N-back task.
    Jansma JM; Ramsey NF; Coppola R; Kahn RS
    Neuroimage; 2000 Dec; 12(6):688-97. PubMed ID: 11112400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.