BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 22143084)

  • 1. A non-volatile memory device consisting of graphene oxide covalently functionalized with ionic liquid.
    Bhunia P; Hwang E; Min M; Lee J; Seo S; Some S; Lee H
    Chem Commun (Camb); 2012 Jan; 48(6):913-5. PubMed ID: 22143084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonvolatile memory device using gold nanoparticles covalently bound to reduced graphene oxide.
    Cui P; Seo S; Lee J; Wang L; Lee E; Min M; Lee H
    ACS Nano; 2011 Sep; 5(9):6826-33. PubMed ID: 21842848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonvolatile rewritable memory effects in graphene oxide functionalized by conjugated polymer containing fluorene and carbazole units.
    Zhang B; Liu YL; Chen Y; Neoh KG; Li YX; Zhu CX; Tok ES; Kang ET
    Chemistry; 2011 Sep; 17(37):10304-11. PubMed ID: 21805510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ synthesis and nonvolatile rewritable-memory effect of polyaniline-functionalized graphene oxide.
    Zhang B; Chen Y; Ren Y; Xu LQ; Liu G; Kang ET; Wang C; Zhu CX; Neoh KG
    Chemistry; 2013 May; 19(20):6265-73. PubMed ID: 23494813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and dynamic random access memory behavior of a functional polyimide.
    Ling QD; Chang FC; Song Y; Zhu CX; Liaw DJ; Chan DS; Kang ET; Neoh KG
    J Am Chem Soc; 2006 Jul; 128(27):8732-3. PubMed ID: 16819858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionalization of graphene with self-doped conducting polypyrrole by click coupling.
    Ramasamy MS; Mahapatra SS; Cho JW
    J Colloid Interface Sci; 2015 Oct; 455():63-70. PubMed ID: 26057104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonvolatile polymer memory device based on bistable electrical switching in a thin film of poly(N-vinylcarbazole) with covalently bonded C60.
    Ling QD; Lim SL; Song Y; Zhu CX; Chan DS; Kang ET; Neoh KG
    Langmuir; 2007 Jan; 23(1):312-9. PubMed ID: 17190520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes.
    Liu J; Yin Z; Cao X; Zhao F; Lin A; Xie L; Fan Q; Boey F; Zhang H; Huang W
    ACS Nano; 2010 Jul; 4(7):3987-92. PubMed ID: 20540553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(3,4-ethylenedioxythiophene)-ionic liquid functionalized graphene/reduced graphene oxide nanostructures: improved conduction and electrochromism.
    Saxena AP; Deepa M; Joshi AG; Bhandari S; Srivastava AK
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1115-26. PubMed ID: 21413722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular block copolymers: graphene oxide composites for memory device applications.
    Yu AD; Liu CL; Chen WC
    Chem Commun (Camb); 2012 Jan; 48(3):383-5. PubMed ID: 22080358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrodeposition of copper tetracyanoquinodimethane for bipolar resistive switching non-volatile memories.
    Müller R; Rouault O; Katzenmeyer A; Goux L; Wouters DJ; Genoe J; Heremans P
    Philos Trans A Math Phys Eng Sci; 2009 Oct; 367(1905):4191-201. PubMed ID: 19770143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonvolatile memory devices based on poly(vinyl alcohol) + graphene oxide hybrid composites.
    Sun Y; Lu J; Ai C; Wen D
    Phys Chem Chem Phys; 2016 Apr; 18(16):11341-7. PubMed ID: 27056548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Read/write schemes analysis for novel complementary resistive switches in passive crossbar memory arrays.
    Yu S; Liang J; Wu Y; Wong HS
    Nanotechnology; 2010 Nov; 21(46):465202. PubMed ID: 20972315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resistive switching characteristics of polymer non-volatile memory devices in a scalable via-hole structure.
    Kim TW; Choi H; Oh SH; Jo M; Wang G; Cho B; Kim DY; Hwang H; Lee T
    Nanotechnology; 2009 Jan; 20(2):025201. PubMed ID: 19417263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ferroelectric polymer-gated graphene memory with high speed conductivity modulation.
    Hwang HJ; Yang JH; Lee YG; Cho C; Kang CG; Kang SC; Park W; Lee BH
    Nanotechnology; 2013 May; 24(17):175202. PubMed ID: 23558367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications.
    Wang Y; Liu Q; Long S; Wang W; Wang Q; Zhang M; Zhang S; Li Y; Zuo Q; Yang J; Liu M
    Nanotechnology; 2010 Jan; 21(4):045202. PubMed ID: 20009169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Device performance of ferroelectric/correlated oxide heterostructures for non-volatile memory applications.
    Hoffman J; Hong X; Ahn CH
    Nanotechnology; 2011 Jun; 22(25):254014. PubMed ID: 21572192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volatile resistance states in electrochemical metallization cells enabling non-destructive readout of complementary resistive switches.
    van den Hurk J; Linn E; Zhang H; Waser R; Valov I
    Nanotechnology; 2014 Oct; 25(42):425202. PubMed ID: 25266966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Write-read-erase in situ optical memory using thermoplastic holograms.
    Lin LH; Beauchamp HL
    Appl Opt; 1970 Sep; 9(9):2088-92. PubMed ID: 20094201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monolayer Vacancy-Induced MXene Memory for Write-Verify-Free Programming.
    Tan D; Sun N; Huang J; Zhang Z; Zeng L; Li Q; Bi S; Bu J; Peng Y; Guo Q; Jiang C
    Small; 2024 Apr; ():e2402273. PubMed ID: 38682587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.