These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22143244)

  • 1. A label-free cytosensor for the enhanced electrochemical detection of cancer cells using polydopamine-coated carbon nanotubes.
    Zheng TT; Zhang R; Zou L; Zhu JJ
    Analyst; 2012 Mar; 137(6):1316-8. PubMed ID: 22143244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical current rectifier as a highly sensitive and selective cytosensor for cancer cell detection.
    Li H; Li D; Liu J; Qin Y; Ren J; Xu S; Liu Y; Mayer D; Wang E
    Chem Commun (Camb); 2012 Mar; 48(20):2594-6. PubMed ID: 22293795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A post-labeling strategy based on dye-induced peeling of the aptamer off single-walled carbon nanotubes for electrochemical aptasensing.
    Fu Y; Wang T; Bu L; Xie Q; Li P; Chen J; Yao S
    Chem Commun (Camb); 2011 Mar; 47(9):2637-9. PubMed ID: 21234471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A carbon nanotubes assisted strategy for insulin detection and insulin proteolysis assay.
    Wang Y; Li J
    Anal Chim Acta; 2009 Sep; 650(1):49-53. PubMed ID: 19720172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyaniline-coated Fe3O4 nanoparticle-carbon-nanotube composite and its application in electrochemical biosensing.
    Liu Z; Wang J; Xie D; Chen G
    Small; 2008 Apr; 4(4):462-6. PubMed ID: 18383578
    [No Abstract]   [Full Text] [Related]  

  • 6. Design and implementation of electrochemical cytosensor for evaluation of cell surface carbohydrate and glycoprotein.
    Zhang JJ; Cheng FF; Zheng TT; Zhu JJ
    Anal Chem; 2010 May; 82(9):3547-55. PubMed ID: 20369831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical sensing for caspase 3 activity and inhibition using quantum dot functionalized carbon nanotube labels.
    Zhang JJ; Zheng TT; Cheng FF; Zhu JJ
    Chem Commun (Camb); 2011 Jan; 47(4):1178-80. PubMed ID: 21072431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization free electrochemical biosensor for folate receptor in cancer cells based on terminal protection.
    Ni J; Wang Q; Yang W; Zhao M; Zhang Y; Guo L; Qiu B; Lin Z; Yang HH
    Biosens Bioelectron; 2016 Dec; 86():496-501. PubMed ID: 27442079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: application to prostate cancer biomarker miR-141.
    Tran HV; Piro B; Reisberg S; Tran LD; Duc HT; Pham MC
    Biosens Bioelectron; 2013 Nov; 49():164-9. PubMed ID: 23743328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbohydrate derivative-functionalized biosensing toward highly sensitive electrochemical detection of cell surface glycan expression as cancer biomarker.
    Zhang X; Lu W; Shen J; Jiang Y; Han E; Dong X; Huang J
    Biosens Bioelectron; 2015 Dec; 74():291-8. PubMed ID: 26143470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanosecond pulse electrical fields used in conjunction with multi-wall carbon nanotubes as a potential tumor treatment.
    Stacey M; Osgood C; Kalluri BS; Cao W; Elsayed-Ali H; Abdel-Fattah T
    Biomed Mater; 2011 Feb; 6(1):011002. PubMed ID: 21266746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polytyrosine as an electroactive label for signal amplification in electrochemical immunosensors.
    Gao Y; Cranston R
    Anal Chim Acta; 2010 Feb; 659(1-2):109-14. PubMed ID: 20103111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free and facile electrochemical biosensing using carbon nanotubes for malondialdehyde detection.
    Yuan L; Lan Y; Han M; Bao J; Tu W; Dai Z
    Analyst; 2013 Jun; 138(11):3131-4. PubMed ID: 23599911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid diagnosis of multidrug resistance in cancer by electrochemical sensor based on carbon nanotubes-drug supramolecular nanocomposites.
    Zhang H; Jiang H; Sun F; Wang H; Zhao J; Chen B; Wang X
    Biosens Bioelectron; 2011 Mar; 26(7):3361-6. PubMed ID: 21300536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of breast cancer cells specially and accurately by an electrochemical method.
    Li T; Fan Q; Liu T; Zhu X; Zhao J; Li G
    Biosens Bioelectron; 2010 Aug; 25(12):2686-9. PubMed ID: 20537525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free and sequence-specific DNA detection down to a picomolar level with carbon nanotubes as support for probe DNA.
    Zhu N; Lin Y; Yu P; Su L; Mao L
    Anal Chim Acta; 2009 Sep; 650(1):44-8. PubMed ID: 19720171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A third generation glucose biosensor based on cellobiose dehydrogenase from Corynascus thermophilus and single-walled carbon nanotubes.
    Tasca F; Zafar MN; Harreither W; Nöll G; Ludwig R; Gorton L
    Analyst; 2011 May; 136(10):2033-6. PubMed ID: 20672160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Status of biomolecular recognition using electrochemical techniques.
    Sadik OA; Aluoch AO; Zhou A
    Biosens Bioelectron; 2009 May; 24(9):2749-65. PubMed ID: 19054662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical cytosensor based on gold nanoparticles for the determination of carbohydrate on cell surface.
    Ding C; Qian S; Wang Z; Qu B
    Anal Biochem; 2011 Jul; 414(1):84-7. PubMed ID: 21396908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective electrochemical detection of cysteine in complex serum by graphene nanoribbon.
    Wu S; Lan X; Huang F; Luo Z; Ju H; Meng C; Duan C
    Biosens Bioelectron; 2012 Feb; 32(1):293-6. PubMed ID: 22209073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.