These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Isolation and characterization of biliary epithelial and stromal cells from resected human cholangiocarcinoma: a novel in vitro model to study tumor-stroma interactions. Massani M; Stecca T; Fabris L; Caratozzolo E; Ruffolo C; Furlanetto A; Morton S; Cadamuro M; Strazzabosco M; Bassi N Oncol Rep; 2013 Sep; 30(3):1143-8. PubMed ID: 23807641 [TBL] [Abstract][Full Text] [Related]
5. Angiotensin II enhances epithelial-to-mesenchymal transition through the interaction between activated hepatic stellate cells and the stromal cell-derived factor-1/CXCR4 axis in intrahepatic cholangiocarcinoma. Okamoto K; Tajima H; Nakanuma S; Sakai S; Makino I; Kinoshita J; Hayashi H; Nakamura K; Oyama K; Nakagawara H; Fujita H; Takamura H; Ninomiya I; Kitagawa H; Fushida S; Fujimura T; Harada S; Wakayama T; Iseki S; Ohta T Int J Oncol; 2012 Aug; 41(2):573-82. PubMed ID: 22664794 [TBL] [Abstract][Full Text] [Related]
6. Periostin in intrahepatic cholangiocarcinoma: pathobiological insights and clinical implications. Sirica AE; Almenara JA; Li C Exp Mol Pathol; 2014 Dec; 97(3):515-24. PubMed ID: 25446840 [TBL] [Abstract][Full Text] [Related]
7. Angiotensin II induces tumor progression and fibrosis in intrahepatic cholangiocarcinoma through an interaction with hepatic stellate cells. Okamoto K; Tajima H; Ohta T; Nakanuma S; Hayashi H; Nakagawara H; Onishi I; Takamura H; Ninomiya I; Kitagawa H; Fushida S; Tani T; Fujimura T; Kayahara M; Harada S; Wakayama T; Iseki S Int J Oncol; 2010 Nov; 37(5):1251-9. PubMed ID: 20878072 [TBL] [Abstract][Full Text] [Related]
8. Hepatic stellate cells may relate to progression of intrahepatic cholangiocarcinoma. Okabe H; Beppu T; Hayashi H; Horino K; Masuda T; Komori H; Ishikawa S; Watanabe M; Takamori H; Iyama K; Baba H Ann Surg Oncol; 2009 Sep; 16(9):2555-64. PubMed ID: 19548033 [TBL] [Abstract][Full Text] [Related]
9. Possible regulation of migration of intrahepatic cholangiocarcinoma cells by interaction of CXCR4 expressed in carcinoma cells with tumor necrosis factor-alpha and stromal-derived factor-1 released in stroma. Ohira S; Sasaki M; Harada K; Sato Y; Zen Y; Isse K; Kozaka K; Ishikawa A; Oda K; Nimura Y; Nakanuma Y Am J Pathol; 2006 Apr; 168(4):1155-68. PubMed ID: 16565491 [TBL] [Abstract][Full Text] [Related]
10. Matricellular proteins in intrahepatic cholangiocarcinoma. Sirica AE Adv Cancer Res; 2022; 156():249-281. PubMed ID: 35961702 [TBL] [Abstract][Full Text] [Related]
11. Transforming Growth Factors α and β Are Essential for Modeling Cholangiocarcinoma Desmoplasia and Progression in a Three-Dimensional Organotypic Culture Model. Manzanares MÁ; Usui A; Campbell DJ; Dumur CI; Maldonado GT; Fausther M; Dranoff JA; Sirica AE Am J Pathol; 2017 May; 187(5):1068-1092. PubMed ID: 28315313 [TBL] [Abstract][Full Text] [Related]
12. Lymphatic spread is related to VEGF-C expression and D2-40-positive myofibroblasts in intrahepatic cholangiocarcinoma. Aishima S; Nishihara Y; Iguchi T; Taguchi K; Taketomi A; Maehara Y; Tsuneyoshi M Mod Pathol; 2008 Mar; 21(3):256-64. PubMed ID: 18192971 [TBL] [Abstract][Full Text] [Related]
13. Isolation of cancer-associated fibroblasts and its promotion to the progression of intrahepatic cholangiocarcinoma. Sha M; Jeong S; Qiu BJ; Tong Y; Xia L; Xu N; Zhang JJ; Xia Q Cancer Med; 2018 Sep; 7(9):4665-4677. PubMed ID: 30062820 [TBL] [Abstract][Full Text] [Related]
14. Down-regulation of aquaporin-1 in intrahepatic cholangiocarcinoma is related to tumor progression and mucin expression. Aishima S; Kuroda Y; Nishihara Y; Taguchi K; Iguchi T; Taketomi A; Maehara Y; Tsuneyoshi M Hum Pathol; 2007 Dec; 38(12):1819-25. PubMed ID: 17854859 [TBL] [Abstract][Full Text] [Related]
16. Hedgehog signaling between cancer cells and hepatic stellate cells in promoting cholangiocarcinoma. Kim Y; Kim MO; Shin JS; Park SH; Kim SB; Kim J; Park SC; Han CJ; Ryu JK; Yoon YB; Kim YT Ann Surg Oncol; 2014 Aug; 21(8):2684-98. PubMed ID: 24682719 [TBL] [Abstract][Full Text] [Related]
17. Recent advances in the regulation of cholangiocarcinoma growth. Francis H; Alpini G; DeMorrow S Am J Physiol Gastrointest Liver Physiol; 2010 Jul; 299(1):G1-9. PubMed ID: 20430870 [TBL] [Abstract][Full Text] [Related]
18. Regarding: epithelial-mesenchymal transition induced by hepatitis C virus core protein in cholangiocarcinoma. Balsano C; Conti B; Arciello M Ann Surg Oncol; 2011 Mar; 18(3):896; author reply 897. PubMed ID: 20645009 [No Abstract] [Full Text] [Related]
19. Downregulation of ROS-FIG inhibits cell proliferation, colony‑formation, cell cycle progression, migration and invasion, while inducing apoptosis in intrahepatic cholangiocarcinoma cells. Deng G; Hu C; Zhu L; Huang F; Huang W; Xu H; Nie W Int J Mol Med; 2014 Sep; 34(3):661-8. PubMed ID: 24968753 [TBL] [Abstract][Full Text] [Related]
20. Tenascin expression at the invasive front is associated with poor prognosis in intrahepatic cholangiocarcinoma. Aishima S; Taguchi K; Terashi T; Matsuura S; Shimada M; Tsuneyoshi M Mod Pathol; 2003 Oct; 16(10):1019-27. PubMed ID: 14559985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]