BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 22143763)

  • 41. The small heat-shock protein αB-crystallin uses different mechanisms of chaperone action to prevent the amorphous versus fibrillar aggregation of α-lactalbumin.
    Kulig M; Ecroyd H
    Biochem J; 2012 Dec; 448(3):343-52. PubMed ID: 23005341
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The reaction of alpha-crystallin with the cross-linker 3,3'-dithiobis(sulfosuccinimidyl propionate) demonstrates close proximity of the C termini of alphaA and alphaB in the native assembly.
    Swaim CL; Smith DL; Smith JB
    Protein Sci; 2004 Oct; 13(10):2832-5. PubMed ID: 15388868
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Site-directed mutations in the C-terminal extension of human alphaB-crystallin affect chaperone function and block amyloid fibril formation.
    Treweek TM; Ecroyd H; Williams DM; Meehan S; Carver JA; Walker MJ
    PLoS One; 2007 Oct; 2(10):e1046. PubMed ID: 17940610
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Importance of eye lens α-crystallin heteropolymer with 3:1 αA to αB ratio: stability, aggregation, and modifications.
    Srinivas P; Narahari A; Petrash JM; Swamy MJ; Reddy GB
    IUBMB Life; 2010 Sep; 62(9):693-702. PubMed ID: 20836128
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced molecular chaperone activity of the small heat-shock protein alphaB-cystallin following covalent immobilization onto a solid-phase support.
    Garvey M; Griesser SS; Griesser HJ; Thierry B; Nussio MR; Shapter JG; Ecroyd H; Giorgetti S; Bellotti V; Gerrard JA; Carver JA
    Biopolymers; 2011 Jun; 95(6):376-89. PubMed ID: 21225714
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Alpha-crystallin expression affects microtubule assembly and prevents their aggregation.
    Xi JH; Bai F; McGaha R; Andley UP
    FASEB J; 2006 May; 20(7):846-57. PubMed ID: 16675842
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Temperature-dependent coaggregation of eye lens αB- and β-crystallins.
    Srinivas PN; Patil MA; Reddy GB
    Biochem Biophys Res Commun; 2011 Feb; 405(3):486-90. PubMed ID: 21256113
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interaction of βA3-Crystallin with Deamidated Mutants of αA- and αB-Crystallins.
    Tiwary E; Hegde S; Purushotham S; Deivanayagam C; Srivastava O
    PLoS One; 2015; 10(12):e0144621. PubMed ID: 26657544
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Conformational and functional differences between recombinant human lens alphaA- and alphaB-crystallin.
    Sun TX; Das BK; Liang JJ
    J Biol Chem; 1997 Mar; 272(10):6220-5. PubMed ID: 9045637
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The small heat-shock protein, alphaB-crystallin, has a variable quaternary structure.
    Haley DA; Horwitz J; Stewart PL
    J Mol Biol; 1998 Mar; 277(1):27-35. PubMed ID: 9514758
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The structural and functional consequences of melatonin and serotonin on human αB-crystallin and their dual role in the eye lens transparency.
    Nourazaran M; Yousefi R; Moosavi-Movahedi F; Panahi F; Hong J; Moosavi-Movahedi AA
    Biochim Biophys Acta Proteins Proteom; 2023 Sep; 1871(5):140928. PubMed ID: 37330131
    [TBL] [Abstract][Full Text] [Related]  

  • 52. alphaB-crystallin maintains skeletal muscle myosin enzymatic activity and prevents its aggregation under heat-shock stress.
    Melkani GC; Cammarato A; Bernstein SI
    J Mol Biol; 2006 May; 358(3):635-45. PubMed ID: 16546210
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acetylation of αA-crystallin in the human lens: effects on structure and chaperone function.
    Nagaraj RH; Nahomi RB; Shanthakumar S; Linetsky M; Padmanabha S; Pasupuleti N; Wang B; Santhoshkumar P; Panda AK; Biswas A
    Biochim Biophys Acta; 2012 Feb; 1822(2):120-9. PubMed ID: 22120592
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preferential and specific binding of human αB-crystallin to a cataract-related variant of γS-crystallin.
    Kingsley CN; Brubaker WD; Markovic S; Diehl A; Brindley AJ; Oschkinat H; Martin RW
    Structure; 2013 Dec; 21(12):2221-7. PubMed ID: 24183572
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sequence and functional conservation of the intergenic region between the head-to-head genes encoding the small heat shock proteins alphaB-crystallin and HspB2 in the mammalian lineage.
    Doerwald L; van Rheede T; Dirks RP; Madsen O; Rexwinkel R; van Genesen ST; Martens GJ; de Jong WW; Lubsen NH
    J Mol Evol; 2004 Nov; 59(5):674-86. PubMed ID: 15693623
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The polydispersity of αB-crystallin is rationalized by an interconverting polyhedral architecture.
    Baldwin AJ; Lioe H; Hilton GR; Baker LA; Rubinstein JL; Kay LE; Benesch JL
    Structure; 2011 Dec; 19(12):1855-63. PubMed ID: 22153508
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Structural View of αB-crystallin Assembly and Amyloid Aggregation.
    Liu Z; Zhang S; Li D; Liu C
    Protein Pept Lett; 2017; 24(4):315-321. PubMed ID: 28176658
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamic O-GlcNAcylation of the small heat shock protein alpha B-crystallin.
    Roquemore EP; Chevrier MR; Cotter RJ; Hart GW
    Biochemistry; 1996 Mar; 35(11):3578-86. PubMed ID: 8639509
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Zebrafish alpha-crystallins: protein structure and chaperone-like activity compared to their mammalian orthologs.
    Dahlman JM; Margot KL; Ding L; Horwitz J; Posner M
    Mol Vis; 2005 Jan; 11():88-96. PubMed ID: 15692462
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quaternary dynamics of αB-crystallin as a direct consequence of localised tertiary fluctuations in the C-terminus.
    Baldwin AJ; Hilton GR; Lioe H; Bagnéris C; Benesch JL; Kay LE
    J Mol Biol; 2011 Oct; 413(2):310-20. PubMed ID: 21839749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.