These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 22144070)
1. An improved protocol for the isolation of RNA from roots of tea (Camellia sinensis (L.) O. Kuntze). Muoki RC; Paul A; Kumari A; Singh K; Kumar S Mol Biotechnol; 2012 Sep; 52(1):82-8. PubMed ID: 22144070 [TBL] [Abstract][Full Text] [Related]
2. Efficient method for isolation of high-quality RNA from Psidium guajava L. tissues. Carpinetti PA; Fioresi VS; Ignez da Cruz T; de Almeida FAN; Canal D; Ferreira A; Ferreira MFDS PLoS One; 2021; 16(7):e0255245. PubMed ID: 34310664 [TBL] [Abstract][Full Text] [Related]
3. Establishment of a rapid, inexpensive protocol for extraction of high quality RNA from small amounts of strawberry plant tissues and other recalcitrant fruit crops. Christou A; Georgiadou EC; Filippou P; Manganaris GA; Fotopoulos V Gene; 2014 Mar; 537(1):169-73. PubMed ID: 24321691 [TBL] [Abstract][Full Text] [Related]
4. Rapid and efficient isolation of high quality nucleic acids from plant tissues rich in polyphenols and polysaccharides. Japelaghi RH; Haddad R; Garoosi GA Mol Biotechnol; 2011 Oct; 49(2):129-37. PubMed ID: 21302150 [TBL] [Abstract][Full Text] [Related]
5. Agrobacterium-mediated silencing of caffeine synthesis through root transformation in Camellia sinensis L. Mohanpuria P; Kumar V; Ahuja PS; Yadav SK Mol Biotechnol; 2011 Jul; 48(3):235-43. PubMed ID: 21181507 [TBL] [Abstract][Full Text] [Related]
6. An effective method of RNA isolation from Fallopia multiflora tuberous roots. Chen L; Sheng SJ; Tan XM; Shen YJ; Li HQ; Zhao SJ Prep Biochem Biotechnol; 2012; 42(1):87-96. PubMed ID: 22239710 [TBL] [Abstract][Full Text] [Related]
7. Identification of a Novel Gene Encoding the Specialized Alanine Decarboxylase in Tea ( Bai P; Wei K; Wang L; Zhang F; Ruan L; Li H; Wu L; Cheng H Molecules; 2019 Feb; 24(3):. PubMed ID: 30717241 [TBL] [Abstract][Full Text] [Related]
8. An improved method for extraction of high-quality total RNA from oil seeds. Rayani A; Dehghan Nayeri F Biotechnol Lett; 2015 Apr; 37(4):927-33. PubMed ID: 25534638 [TBL] [Abstract][Full Text] [Related]
9. A shared response of thaumatin like protein, chitinase, and late embryogenesis abundant protein3 to environmental stresses in tea [Camellia sinensis (L.) O. Kuntze]. Muoki RC; Paul A; Kumar S Funct Integr Genomics; 2012 Aug; 12(3):565-71. PubMed ID: 22543414 [TBL] [Abstract][Full Text] [Related]
10. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. Shi CY; Yang H; Wei CL; Yu O; Zhang ZZ; Jiang CJ; Sun J; Li YY; Chen Q; Xia T; Wan XC BMC Genomics; 2011 Feb; 12():131. PubMed ID: 21356090 [TBL] [Abstract][Full Text] [Related]
11. Identification and expression profiling of the auxin response factors (ARFs) in the tea plant (Camellia sinensis (L.) O. Kuntze) under various abiotic stresses. Xu YX; Mao J; Chen W; Qian TT; Liu SC; Hao WJ; Li CF; Chen L Plant Physiol Biochem; 2016 Jan; 98():46-56. PubMed ID: 26637949 [TBL] [Abstract][Full Text] [Related]
12. Identification of differentially expressed genes in dormant (banjhi) bud of tea (Camellia sinensis (L.) O. Kuntze) using subtractive hybridization approach. Krishnaraj T; Gajjeraman P; Palanisamy S; Subhas Chandrabose SR; Azad Mandal AK Plant Physiol Biochem; 2011 Jun; 49(6):565-71. PubMed ID: 21481598 [TBL] [Abstract][Full Text] [Related]
13. Extraction of high quality of RNA and construction of a suppression subtractive hybridization (SSH) library from chestnut rose (Rosa roxburghii Tratt). Xu Q; Wen X; Tao N; Hu Z; Yue H; Deng X Biotechnol Lett; 2006 Apr; 28(8):587-91. PubMed ID: 16614897 [TBL] [Abstract][Full Text] [Related]
14. Activated charcoal-mediated RNA extraction method for Azadirachta indica and plants highly rich in polyphenolics, polysaccharides and other complex secondary compounds. Rajakani R; Narnoliya L; Sangwan NS; Sangwan RS; Gupta V BMC Res Notes; 2013 Mar; 6():125. PubMed ID: 23537338 [TBL] [Abstract][Full Text] [Related]
15. Identification of genes involved in indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.) by suppression subtractive hybridization. Wei K; Wang L; Cheng H; Zhang C; Ma C; Zhang L; Gong W; Wu L Gene; 2013 Feb; 514(2):91-8. PubMed ID: 23201417 [TBL] [Abstract][Full Text] [Related]
16. 5S rDNA gene diversity in tea (Camellia sinensis (L.) O. Kuntze) and its use for variety identification. Singh D; Ahuja PS Genome; 2006 Jan; 49(1):91-6. PubMed ID: 16462906 [TBL] [Abstract][Full Text] [Related]
17. Potential anthelmintics: polyphenols from the tea plant Camellia sinensis L. are lethally toxic to Caenorhabditis elegans. Mukai D; Matsuda N; Yoshioka Y; Sato M; Yamasaki T J Nat Med; 2008 Apr; 62(2):155-9. PubMed ID: 18404315 [TBL] [Abstract][Full Text] [Related]
18. Two modified RNA extraction methods compatible with transcript profiling and gene expression analysis for cotton roots. Xie C; Wang C; Wang X; Yang X Prep Biochem Biotechnol; 2013; 43(5):500-11. PubMed ID: 23581784 [TBL] [Abstract][Full Text] [Related]
19. Construction of cDNA library and preliminary analysis of expressed sequence tags from tea plant [Camellia sinensis (L) O. Kuntze]. Phukon M; Namdev R; Deka D; Modi MK; Sen P Gene; 2012 Sep; 506(1):202-6. PubMed ID: 22759521 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of Camellia sinensis (L.) O. Kuntze on Microcystis aeruginosa and isolation of the inhibition factors. Lu Y; Wang J; Yu Y; Su W; Kong F Biotechnol Lett; 2013 Jul; 35(7):1029-34. PubMed ID: 23584804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]