BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 22144278)

  • 1. Multiplex imaging of Rho family GTPase activities in living cells.
    Spiering D; Hodgson L
    Methods Mol Biol; 2012; 827():215-34. PubMed ID: 22144278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplex Imaging of Rho GTPase Activities in Living Cells.
    Bhalla RM; Hülsemann M; Verkhusha PV; Walker MG; Shcherbakova DM; Hodgson L
    Methods Mol Biol; 2021; 2350():43-68. PubMed ID: 34331278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosensors of DsRed as FRET partner with CFP or GFP for quantitatively imaging induced activation of Rac, Cdc42 in living cells.
    Liu R; Ren D; Liu Y; Deng Y; Sun B; Zhang Q; Guo X
    Mol Imaging Biol; 2011 Jun; 13(3):424-431. PubMed ID: 20683671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Fluorescence Resonance Energy Transfer-Based Biosensors to Probe Rho GTPase Activation During Phagocytosis.
    Miskolci V; Hodgson L; Cox D
    Methods Mol Biol; 2017; 1519():125-143. PubMed ID: 27815877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing biosensors for Rho family proteins--deciphering the dynamics of Rho family GTPase activation in living cells.
    Pertz O; Hahn KM
    J Cell Sci; 2004 Mar; 117(Pt 8):1313-8. PubMed ID: 15020671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosensors for characterizing the dynamics of rho family GTPases in living cells.
    Hodgson L; Shen F; Hahn K
    Curr Protoc Cell Biol; 2010 Mar; Chapter 14():Unit 14.11.1-26. PubMed ID: 20235099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET.
    Shcherbakova DM; Cox Cammer N; Huisman TM; Verkhusha VV; Hodgson L
    Nat Chem Biol; 2018 Jun; 14(6):591-600. PubMed ID: 29686359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rho MultiBinder, a fluorescent biosensor that reports the activity of multiple GTPases.
    Pimenta FM; Huh J; Guzman B; Amanah D; Marston DJ; Pinkin NK; Danuser G; Hahn KM
    Biophys J; 2023 Sep; 122(18):3646-3655. PubMed ID: 37085995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordination of Rho GTPase activities during cell protrusion.
    Machacek M; Hodgson L; Welch C; Elliott H; Pertz O; Nalbant P; Abell A; Johnson GL; Hahn KM; Danuser G
    Nature; 2009 Sep; 461(7260):99-103. PubMed ID: 19693013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Genetically Encoded FRET Biosensors for Rho-Family GTPases.
    Donnelly SK; Miskolci V; Garrastegui AM; Cox D; Hodgson L
    Methods Mol Biol; 2018; 1821():87-106. PubMed ID: 30062407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane.
    Devauges V; Matthews DR; Aluko J; Nedbal J; Levitt JA; Poland SP; Coban O; Weitsman G; Monypenny J; Ng T; Ameer-Beg SM
    PLoS One; 2014; 9(10):e110695. PubMed ID: 25360776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplexed GTPase and GEF biosensor imaging enables network connectivity analysis.
    Marston DJ; Vilela M; Huh J; Ren J; Azoitei ML; Glekas G; Danuser G; Sondek J; Hahn KM
    Nat Chem Biol; 2020 Aug; 16(8):826-833. PubMed ID: 32424303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Millisecond spatiotemporal dynamics of FRET biosensors by the pair correlation function and the phasor approach to FLIM.
    Hinde E; Digman MA; Hahn KM; Gratton E
    Proc Natl Acad Sci U S A; 2013 Jan; 110(1):135-40. PubMed ID: 23248275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors.
    Aoki K; Matsuda M
    Nat Protoc; 2009; 4(11):1623-31. PubMed ID: 19834477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel split-luciferase-based genetically encoded biosensors for noninvasive visualization of Rho GTPases.
    Leng W; Pang X; Xia H; Li M; Chen L; Tang Q; Yuan D; Li R; Li L; Gao F; Bi F
    PLoS One; 2013; 8(4):e62230. PubMed ID: 23614039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity of Rho-family GTPases during cell division as visualized with FRET-based probes.
    Yoshizaki H; Ohba Y; Kurokawa K; Itoh RE; Nakamura T; Mochizuki N; Nagashima K; Matsuda M
    J Cell Biol; 2003 Jul; 162(2):223-32. PubMed ID: 12860967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing Cdc42 Polarization Dynamics in Budding Yeast Using a Biosensor.
    Okada S; Lee ME; Bi E; Park HO
    Methods Enzymol; 2017; 589():171-190. PubMed ID: 28336063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo fluorescence resonance energy transfer imaging reveals differential activation of Rho-family GTPases in glioblastoma cell invasion.
    Hirata E; Yukinaga H; Kamioka Y; Arakawa Y; Miyamoto S; Okada T; Sahai E; Matsuda M
    J Cell Sci; 2012 Feb; 125(Pt 4):858-68. PubMed ID: 22399802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ratiometric Imaging Using a Single Dye Enables Simultaneous Visualization of Rac1 and Cdc42 Activation.
    MacNevin CJ; Toutchkine A; Marston DJ; Hsu CW; Tsygankov D; Li L; Liu B; Qi T; Nguyen DV; Hahn KM
    J Am Chem Soc; 2016 Mar; 138(8):2571-5. PubMed ID: 26863024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RhoA, Rac1, and Cdc42 differentially regulate αSMA and collagen I expression in mesenchymal stem cells.
    Ge J; Burnier L; Adamopoulou M; Kwa MQ; Schaks M; Rottner K; Brakebusch C
    J Biol Chem; 2018 Jun; 293(24):9358-9369. PubMed ID: 29700112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.