These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 22144348)
1. High-capacity silicon-air battery in alkaline solution. Zhong X; Zhang H; Liu Y; Bai J; Liao L; Huang Y; Duan X ChemSusChem; 2012 Jan; 5(1):177-80. PubMed ID: 22144348 [No Abstract] [Full Text] [Related]
2. Remarkable impact of water on the discharge performance of a silicon-air battery. Cohn G; Macdonald DD; Ein-Eli Y ChemSusChem; 2011 Aug; 4(8):1124-9. PubMed ID: 21766461 [TBL] [Abstract][Full Text] [Related]
3. Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes. Hu L; Wu H; Hong SS; Cui L; McDonough JR; Bohy S; Cui Y Chem Commun (Camb); 2011 Jan; 47(1):367-9. PubMed ID: 20830432 [TBL] [Abstract][Full Text] [Related]
4. Nanostructured silicon anodes for lithium ion rechargeable batteries. Teki R; Datta MK; Krishnan R; Parker TC; Lu TM; Kumta PN; Koratkar N Small; 2009 Oct; 5(20):2236-42. PubMed ID: 19739146 [TBL] [Abstract][Full Text] [Related]
5. Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires. Wang XL; Han WQ ACS Appl Mater Interfaces; 2010 Dec; 2(12):3709-13. PubMed ID: 21114292 [TBL] [Abstract][Full Text] [Related]
6. Novel silicon nanohemisphere-array solar cells with enhanced performance. Li Y; Yu H; Li J; Wong SM; Sun XW; Li X; Cheng C; Fan HJ; Wang J; Singh N; Lo PG; Kwong DL Small; 2011 Nov; 7(22):3138-43. PubMed ID: 21898793 [No Abstract] [Full Text] [Related]
7. New insight into the discharge mechanism of silicon-air batteries using electrochemical impedance spectroscopy. Cohn G; Eichel RA; Ein-Eli Y Phys Chem Chem Phys; 2013 Mar; 15(9):3256-63. PubMed ID: 23348151 [TBL] [Abstract][Full Text] [Related]
10. Fibrous nano-silica (KCC-1)-supported palladium catalyst: Suzuki coupling reactions under sustainable conditions. Fihri A; Cha D; Bouhrara M; Almana N; Polshettiwar V ChemSusChem; 2012 Jan; 5(1):85-9. PubMed ID: 22086867 [No Abstract] [Full Text] [Related]
11. High-voltage aqueous battery approaching 3 V using an acidic-alkaline double electrolyte. Chen L; Guo Z; Xia Y; Wang Y Chem Commun (Camb); 2013 Mar; 49(22):2204-6. PubMed ID: 23370413 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery. Qiu MC; Yang LW; Qi X; Li J; Zhong JX ACS Appl Mater Interfaces; 2010 Dec; 2(12):3614-8. PubMed ID: 21077626 [TBL] [Abstract][Full Text] [Related]
13. Characterization of nanoporous silicon layer to reduce the optical losses of crystalline silicon solar cells. Lee S; Lee E J Nanosci Nanotechnol; 2007 Nov; 7(11):3713-6. PubMed ID: 18047043 [TBL] [Abstract][Full Text] [Related]
14. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. Lin C; Povinelli ML Opt Express; 2009 Oct; 17(22):19371-81. PubMed ID: 19997158 [TBL] [Abstract][Full Text] [Related]
15. High-performance lithium battery anodes using silicon nanowires. Chan CK; Peng H; Liu G; McIlwrath K; Zhang XF; Huggins RA; Cui Y Nat Nanotechnol; 2008 Jan; 3(1):31-5. PubMed ID: 18654447 [TBL] [Abstract][Full Text] [Related]
16. Solution titration by wall deprotonation during capillary filling of silicon oxide nanochannels. Janssen KG; Hoang TH; Floris J; de Vries J; Tas NR; Eijkel JC; Hankemeier T Anal Chem; 2008 Nov; 80(21):8095-101. PubMed ID: 18826247 [TBL] [Abstract][Full Text] [Related]
17. Silicon nanowire fabric as a lithium ion battery electrode material. Chockla AM; Harris JT; Akhavan VA; Bogart TD; Holmberg VC; Steinhagen C; Mullins CB; Stevenson KJ; Korgel BA J Am Chem Soc; 2011 Dec; 133(51):20914-21. PubMed ID: 22070459 [TBL] [Abstract][Full Text] [Related]