These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 22144349)

  • 1. Screening for cellulases with industrial value and their use in biomass conversion.
    Jüergensen J; Ilmberger N; Streit WR
    Methods Mol Biol; 2012; 834():1-16. PubMed ID: 22144349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening for cellulase-encoding clones in metagenomic libraries.
    Ilmberger N; Streit WR
    Methods Mol Biol; 2010; 668():177-88. PubMed ID: 20830564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Industrial exploitation of renewable resources: from ethanol production to bioproducts development].
    Lopes Ferreira N
    J Soc Biol; 2008; 202(3):191-9. PubMed ID: 18980741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomass recalcitrance: engineering plants and enzymes for biofuels production.
    Himmel ME; Ding SY; Johnson DK; Adney WS; Nimlos MR; Brady JW; Foust TD
    Science; 2007 Feb; 315(5813):804-7. PubMed ID: 17289988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods in Enzymology. Preface.
    Gilbert HJ
    Methods Enzymol; 2012; 510():xxi-xxii. PubMed ID: 22608742
    [No Abstract]   [Full Text] [Related]  

  • 6. Bioprospecting of functional cellulases from metagenome for second generation biofuel production: a review.
    Tiwari R; Nain L; Labrou NE; Shukla P
    Crit Rev Microbiol; 2018 Mar; 44(2):244-257. PubMed ID: 28609211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The porcine gut microbial metagenomic library for mining novel cellulases established from growing pigs fed cellulose-supplemented high-fat diets.
    Wang W; Archbold T; Kimber MS; Li J; Lam JS; Fan MZ
    J Anim Sci; 2012 Dec; 90 Suppl 4():400-2. PubMed ID: 23365392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulases: Classification, Methods of Determination and Industrial Applications.
    Sharma A; Tewari R; Rana SS; Soni R; Soni SK
    Appl Biochem Biotechnol; 2016 Aug; 179(8):1346-80. PubMed ID: 27068832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multi-substrate approach for functional metagenomics-based screening for (hemi)cellulases in two wheat straw-degrading microbial consortia unveils novel thermoalkaliphilic enzymes.
    Maruthamuthu M; Jiménez DJ; Stevens P; van Elsas JD
    BMC Genomics; 2016 Jan; 17():86. PubMed ID: 26822785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening for Cellulase Encoding Clones in Metagenomic Libraries.
    Ilmberger N; Streit WR
    Methods Mol Biol; 2017; 1539():205-217. PubMed ID: 27900691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metagenomic cellulases highly tolerant towards the presence of ionic liquids--linking thermostability and halotolerance.
    Ilmberger N; Meske D; Juergensen J; Schulte M; Barthen P; Rabausch U; Angelov A; Mientus M; Liebl W; Schmitz RA; Streit WR
    Appl Microbiol Biotechnol; 2012 Jul; 95(1):135-46. PubMed ID: 22143172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia.
    Wongwilaiwalin S; Laothanachareon T; Mhuantong W; Tangphatsornruang S; Eurwilaichitr L; Igarashi Y; Champreda V
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):8941-54. PubMed ID: 23381385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategy for screening metagenomic resources for exocellulase activity using a robotic, high-throughput screening system.
    Ko KC; Han Y; Cheong DE; Choi JH; Song JJ
    J Microbiol Methods; 2013 Sep; 94(3):311-6. PubMed ID: 23892060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulases from insects.
    Fischer R; Ostafe R; Twyman RM
    Adv Biochem Eng Biotechnol; 2013; 136():51-64. PubMed ID: 23728162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms.
    Garvey M; Klose H; Fischer R; Lambertz C; Commandeur U
    Trends Biotechnol; 2013 Oct; 31(10):581-93. PubMed ID: 23910542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens.
    Duan CJ; Xian L; Zhao GC; Feng Y; Pang H; Bai XL; Tang JL; Ma QS; Feng JX
    J Appl Microbiol; 2009 Jul; 107(1):245-56. PubMed ID: 19302301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approaches for improving thermostability characteristics in cellulases.
    Anbar M; Bayer EA
    Methods Enzymol; 2012; 510():261-71. PubMed ID: 22608731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose.
    Selig MJ; Viamajala S; Decker SR; Tucker MP; Himmel ME; Vinzant TB
    Biotechnol Prog; 2007; 23(6):1333-9. PubMed ID: 17973399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Culture-independent digging of cellulases and genes from natural environments].
    Zhu Y; Liu W; Wang L; Chen G
    Sheng Wu Gong Cheng Xue Bao; 2009 Dec; 25(12):1838-43. PubMed ID: 20352958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro and macroalgal biomass: a renewable source for bioethanol.
    John RP; Anisha GS; Nampoothiri KM; Pandey A
    Bioresour Technol; 2011 Jan; 102(1):186-93. PubMed ID: 20663661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.