These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22144944)

  • 1. Prior knowledge improves decoding of finger flexion from electrocorticographic signals.
    Wang Z; Ji Q; Miller KJ; Schalk G
    Front Neurosci; 2011; 5():127. PubMed ID: 22144944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Logistic-weighted regression improves decoding of finger flexion from electrocorticographic signals.
    Chen W; Liu X; Litt B
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2629-32. PubMed ID: 25570530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding Finger Flexion from Band-Specific ECoG Signals in Humans.
    Liang N; Bougrain L
    Front Neurosci; 2012; 6():91. PubMed ID: 22754496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding flexion of individual fingers using electrocorticographic signals in humans.
    Kubánek J; Miller KJ; Ojemann JG; Wolpaw JR; Schalk G
    J Neural Eng; 2009 Dec; 6(6):066001. PubMed ID: 19794237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding Finger Movements from ECoG Signals Using Switching Linear Models.
    Flamary R; Rakotomamonjy A
    Front Neurosci; 2012; 6():29. PubMed ID: 22408601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From classic motor imagery to complex movement intention decoding: The noninvasive Graz-BCI approach.
    Müller-Putz GR; Schwarz A; Pereira J; Ofner P
    Prog Brain Res; 2016; 228():39-70. PubMed ID: 27590965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural decoding of electrocorticographic signals using dynamic mode decomposition.
    Shiraishi Y; Kawahara Y; Yamashita O; Fukuma R; Yamamoto S; Saitoh Y; Kishima H; Yanagisawa T
    J Neural Eng; 2020 Jun; 17(3):036009. PubMed ID: 32289756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG-based BCI system for decoding finger movements within the same hand.
    Alazrai R; Alwanni H; Daoud MI
    Neurosci Lett; 2019 Apr; 698():113-120. PubMed ID: 30630057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding three-dimensional reaching movements using electrocorticographic signals in humans.
    Bundy DT; Pahwa M; Szrama N; Leuthardt EC
    J Neural Eng; 2016 Apr; 13(2):026021. PubMed ID: 26902372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asynchronous decoding of finger movements from ECoG signals using long-range dependencies conditional random fields.
    Delgado Saa JF; Pesters Ad; Cetin M
    J Neural Eng; 2016 Jun; 13(3):036017. PubMed ID: 27138273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A piecewise probabilistic regression model to decode hand movement trajectories from epidural and subdural ECoG signals.
    Farrokhi B; Erfanian A
    J Neural Eng; 2018 Jun; 15(3):036020. PubMed ID: 29485407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finger movements are mainly represented by a linear transformation of energy in band-specific ECoG signals.
    Marjaninejad A; Taherian B; Valero-Cuevas FJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():986-989. PubMed ID: 29060039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding onset and direction of movements using Electrocorticographic (ECoG) signals in humans.
    Wang Z; Gunduz A; Brunner P; Ritaccio AL; Ji Q; Schalk G
    Front Neuroeng; 2012; 5():15. PubMed ID: 22891058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoding natural grasp types from human ECoG.
    Pistohl T; Schulze-Bonhage A; Aertsen A; Mehring C; Ball T
    Neuroimage; 2012 Jan; 59(1):248-60. PubMed ID: 21763434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-causal spike filtering improves decoding of movement intention for intracortical BCIs.
    Masse NY; Jarosiewicz B; Simeral JD; Bacher D; Stavisky SD; Cash SS; Oakley EM; Berhanu E; Eskandar E; Friehs G; Hochberg LR; Donoghue JP
    J Neurosci Methods; 2014 Oct; 236():58-67. PubMed ID: 25128256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding fingertip trajectory from electrocorticographic signals in humans.
    Nakanishi Y; Yanagisawa T; Shin D; Chen C; Kambara H; Yoshimura N; Fukuma R; Kishima H; Hirata M; Koike Y
    Neurosci Res; 2014 Aug; 85():20-7. PubMed ID: 24880133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous decoding of human grasp kinematics using epidural and subdural signals.
    Flint RD; Rosenow JM; Tate MC; Slutzky MW
    J Neural Eng; 2017 Feb; 14(1):016005. PubMed ID: 27900947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding continuous three-dimensional hand trajectories from epidural electrocorticographic signals in Japanese macaques.
    Shimoda K; Nagasaka Y; Chao ZC; Fujii N
    J Neural Eng; 2012 Jun; 9(3):036015. PubMed ID: 22627008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study on decoding models for the reconstruction of hand trajectories from the human magnetoencephalography.
    Yeom HG; Hong W; Kang DY; Chung CK; Kim JS; Kim SP
    Biomed Res Int; 2014; 2014():176857. PubMed ID: 25050324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.