These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 22145732)

  • 1. Computational model-based design of a wearable artificial pump-lung for cardiopulmonary/respiratory support.
    Wu ZJ; Taskin ME; Zhang T; Fraser KH; Griffith BP
    Artif Organs; 2012 Apr; 36(4):387-99. PubMed ID: 22145732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational design and in vitro characterization of an integrated maglev pump-oxygenator.
    Zhang J; Taskin ME; Koert A; Zhang T; Gellman B; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ
    Artif Organs; 2009 Oct; 33(10):805-17. PubMed ID: 19681842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump.
    Zhang J; Gellman B; Koert A; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ
    Artif Organs; 2006 Mar; 30(3):168-77. PubMed ID: 16480391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational fluid dynamics investigation of a centrifugal blood pump.
    Legendre D; Antunes P; Bock E; Andrade A; Biscegli JF; Ortiz JP
    Artif Organs; 2008 Apr; 32(4):342-8. PubMed ID: 18370951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of a miniature Maglev ventricular assist device for pediatric circulatory support.
    Zhang J; Koert A; Gellman B; Gempp TM; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ
    ASAIO J; 2007; 53(1):23-31. PubMed ID: 17237645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of computational fluid dynamics techniques to blood pumps.
    Sukumar R; Athavale MM; Makhijani VB; Przekwas AJ
    Artif Organs; 1996 Jun; 20(6):529-33. PubMed ID: 8817950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Right ventricular unloading and respiratory support with a wearable artificial pump-lung in an ovine model.
    Liu Y; Sanchez PG; Wei X; Li T; Watkins AC; Li SY; Griffith BP; Wu ZJ
    J Heart Lung Transplant; 2014 Aug; 33(8):857-63. PubMed ID: 24746636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational characterization of flow and hemolytic performance of the UltraMag blood pump for circulatory support.
    Taskin ME; Fraser KH; Zhang T; Gellman B; Fleischli A; Dasse KA; Griffith BP; Wu ZJ
    Artif Organs; 2010 Dec; 34(12):1099-113. PubMed ID: 20626739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood Recirculation Enhances Oxygenation Efficiency of Artificial Lungs.
    Madhani SP; May AG; Frankowski BJ; Burgreen GW; Federspiel WJ
    ASAIO J; 2020 May; 66(5):565-570. PubMed ID: 31335366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Computational Modeling can Help to Predict Gas Transfer in Artificial Lungs Early in the Design Process.
    Kaesler A; Rosen M; Schlanstein PC; Wagner G; Groß-Hardt S; Schmitz-Rode T; Steinseifer U; Arens J
    ASAIO J; 2020 Jun; 66(6):683-690. PubMed ID: 31789656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress toward an ambulatory pump-lung.
    Wu ZJ; Gartner M; Litwak KN; Griffith BP
    J Thorac Cardiovasc Surg; 2005 Oct; 130(4):973-8. PubMed ID: 16214507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A validated computational fluid dynamics model to estimate hemolysis in a rotary blood pump.
    Arvand A; Hormes M; Reul H
    Artif Organs; 2005 Jul; 29(7):531-40. PubMed ID: 15982281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical experience with the iLA Membrane Ventilator pumpless extracorporeal lung-assist device.
    Walles T
    Expert Rev Med Devices; 2007 May; 4(3):297-305. PubMed ID: 17488224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational fluid dynamics-based design and in vitro characterization of a novel pediatric pump-lung.
    Han D; Zhang J; He G; Griffith BP; Wu ZJ
    Artif Organs; 2024 Feb; 48(2):130-140. PubMed ID: 37860931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Modeling of Oxygen Transfer in Artificial Lungs.
    Kaesler A; Rosen M; Schmitz-Rode T; Steinseifer U; Arens J
    Artif Organs; 2018 Aug; 42(8):786-799. PubMed ID: 30043394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel wearable pump-lung device: in vitro and acute in vivo study.
    Zhang T; Wei X; Bianchi G; Wong PM; Biancucci B; Griffith BP; Wu ZJ
    J Heart Lung Transplant; 2012 Jan; 31(1):101-5. PubMed ID: 22014451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemocompatibility evaluation with experimental and computational fluid dynamic analyses for a monopivot circulatory assist pump.
    Nishida M; Maruyama O; Kosaka R; Yamane T; Kogure H; Kawamura H; Yamamoto Y; Kuwana K; Sankai Y; Tsutsui T
    Artif Organs; 2009 Apr; 33(4):378-86. PubMed ID: 19335415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac extracorporeal life support: state of the art in 2007.
    Cooper DS; Jacobs JP; Moore L; Stock A; Gaynor JW; Chancy T; Parpard M; Griffin DA; Owens T; Checchia PA; Thiagarajan RR; Spray TL; Ravishankar C
    Cardiol Young; 2007 Sep; 17 Suppl 2():104-15. PubMed ID: 18039404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo evaluation of the "TinyPump" as a pediatric left ventricular assist device.
    Kitao T; Ando Y; Yoshikawa M; Kobayashi M; Kimura T; Ohsawa H; Machida S; Yokoyama N; Sakota D; Konno T; Ishihara K; Takatani S
    Artif Organs; 2011 May; 35(5):543-53. PubMed ID: 21595723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational fluid dynamics-based hydraulic and hemolytic analyses of a novel left ventricular assist blood pump.
    Yang XC; Zhang Y; Gui XM; Hu SS
    Artif Organs; 2011 Oct; 35(10):948-55. PubMed ID: 21517911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.