These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 22145785)

  • 1. Enhancement of iron(II)-dependent reduction of nitrite to nitric oxide by thiocyanate and accumulation of iron(II)/thiocyanate/nitric oxide complex under conditions simulating the mixture of saliva and gastric juice.
    Takahama U; Hirota S
    Chem Res Toxicol; 2012 Jan; 25(1):207-15. PubMed ID: 22145785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the food additive sulfite on nitrite-dependent nitric oxide production under conditions simulating the mixture of saliva and gastric juice.
    Takahama U; Hirota S
    J Agric Food Chem; 2012 Feb; 60(4):1102-12. PubMed ID: 22224438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salivary thiocyanate/nitrite inhibits hydroxylation of 2-hydroxybenzoic acid induced by hydrogen peroxide/Fe(II) systems under acidic conditions: possibility of thiocyanate/nitrite-dependent scavenging of hydroxyl radical in the stomach.
    Takahama U; Oniki T
    Biochim Biophys Acta; 2004 Nov; 1675(1-3):130-8. PubMed ID: 15535976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactions of thiocyanate in the mixture of nitrite and hydrogen peroxide under acidic conditions: investigation of the reactions simulating the mixture of saliva and gastric juice.
    Takahama U; Tanaka M; Oniki T; Hirota S
    Free Radic Res; 2007 Jun; 41(6):627-37. PubMed ID: 17516234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between ascorbic acid and chlorogenic acid during the formation of nitric oxide in acidified saliva.
    Takahama U; Tanaka M; Hirota S
    J Agric Food Chem; 2008 Nov; 56(21):10406-13. PubMed ID: 18922016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen uptake during the mixing of saliva with ascorbic acid under acidic conditions: possibility of its occurrence in the stomach.
    Takahama U; Hirota S; Yamamoto A; Oniki T
    FEBS Lett; 2003 Aug; 550(1-3):64-8. PubMed ID: 12935887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of the thiocyanate conjugate of chlorogenic acid in coffee under acidic conditions in the presence of thiocyanate and nitrite: possible occurrence in the stomach.
    Takahama U; Tanaka M; Oniki T; Hirota S; Yamauchi R
    J Agric Food Chem; 2007 May; 55(10):4169-76. PubMed ID: 17455951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quercetin-dependent reduction of salivary nitrite to nitric oxide under acidic conditions and interaction between quercetin and ascorbic acid during the reduction.
    Takahama U; Yamamoto A; Hirota S; Oniki T
    J Agric Food Chem; 2003 Sep; 51(20):6014-20. PubMed ID: 13129310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of nitric oxide generation from salivary nitrite in human gastric juice.
    Iijima K; Fyfe V; McColl KE
    Scand J Gastroenterol; 2003 Mar; 38(3):246-52. PubMed ID: 12737438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quercetin-dependent scavenging of reactive nitrogen species derived from nitric oxide and nitrite in the human oral cavity: interaction of quercetin with salivary redox components.
    Takahama U; Hirota S; Oniki T
    Arch Oral Biol; 2006 Aug; 51(8):629-39. PubMed ID: 16581012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactions of (+)-catechin with salivary nitrite and thiocyanate under conditions simulating the gastric lumen: production of dinitrosocatechin and its thiocyanate conjugate.
    Takahama U; Yamauchi R; Hirota S
    Free Radic Res; 2014 Aug; 48(8):956-66. PubMed ID: 24886172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intragastric generation of antimicrobial nitrogen oxides from saliva--physiological and therapeutic considerations.
    Björne H; Weitzberg E; Lundberg JO
    Free Radic Biol Med; 2006 Nov; 41(9):1404-12. PubMed ID: 17023267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiocyanate cannot inhibit the formation of reactive nitrogen species in the human oral cavity in the presence of high concentrations of nitrite: detection of reactive nitrogen species with 4,5-diaminofluorescein.
    Takahama U; Hirota S; Oniki T
    Chem Res Toxicol; 2006 Aug; 19(8):1066-73. PubMed ID: 16918246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salivary uric acid at the acidic pH of the stomach is the principal defense against nitrite-derived reactive species: sparing effects of chlorogenic acid and serum albumin.
    Pietraforte D; Castelli M; Metere A; Scorza G; Samoggia P; Menditto A; Minetti M
    Free Radic Biol Med; 2006 Dec; 41(12):1753-63. PubMed ID: 17157178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of nitric oxide-derived reactive nitrogen species in human oral cavity and their scavenging by salivary redox components.
    Takahama U; Hirota S; Oniki T
    Free Radic Res; 2005 Jul; 39(7):737-45. PubMed ID: 16036353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of nitric oxide and its derivatives in human mixed saliva and acidified saliva.
    Takahama U; Hirota S; Takayuki O
    Methods Enzymol; 2008; 440():381-96. PubMed ID: 18423231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro studies indicate that acid catalysed generation of N-nitrosocompounds from dietary nitrate will be maximal at the gastro-oesophageal junction and cardia.
    Moriya A; Grant J; Mowat C; Williams C; Carswell A; Preston T; Anderson S; Iijima K; McColl KE
    Scand J Gastroenterol; 2002 Mar; 37(3):253-61. PubMed ID: 11916186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apples increase nitric oxide production by human saliva at the acidic pH of the stomach: a new biological function for polyphenols with a catechol group?
    Peri L; Pietraforte D; Scorza G; Napolitano A; Fogliano V; Minetti M
    Free Radic Biol Med; 2005 Sep; 39(5):668-81. PubMed ID: 16085185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of nitrous Acid to nitric oxide by coffee melanoidins and enhancement of the reduction by thiocyanate: possibility of its occurrence in the stomach.
    Takahama U; Hirota S
    J Agric Food Chem; 2008 Jun; 56(12):4736-44. PubMed ID: 18522412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of nitric oxide, ethyl nitrite and an oxathiolone derivative of caffeic acid in a mixture of saliva and white wine.
    Takahama U; Tanaka M; Hirota S
    Free Radic Res; 2010 Mar; 44(3):293-303. PubMed ID: 20166894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.