These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 22145878)

  • 21. Distinct roles of rodent orbitofrontal and medial prefrontal cortex in decision making.
    Sul JH; Kim H; Huh N; Lee D; Jung MW
    Neuron; 2010 May; 66(3):449-60. PubMed ID: 20471357
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes.
    Takahashi YK; Roesch MR; Stalnaker TA; Haney RZ; Calu DJ; Taylor AR; Burke KA; Schoenbaum G
    Neuron; 2009 Apr; 62(2):269-80. PubMed ID: 19409271
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Different time courses for learning-related changes in amygdala and orbitofrontal cortex.
    Morrison SE; Saez A; Lau B; Salzman CD
    Neuron; 2011 Sep; 71(6):1127-40. PubMed ID: 21943608
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex.
    Chudasama Y; Robbins TW
    J Neurosci; 2003 Sep; 23(25):8771-80. PubMed ID: 14507977
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Beyond reversal: a critical role for human orbitofrontal cortex in flexible learning from probabilistic feedback.
    Tsuchida A; Doll BB; Fellows LK
    J Neurosci; 2010 Dec; 30(50):16868-75. PubMed ID: 21159958
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Orbitofrontal Cortex Signals Expected Outcomes with Predictive Codes When Stable Contingencies Promote the Integration of Reward History.
    Riceberg JS; Shapiro ML
    J Neurosci; 2017 Feb; 37(8):2010-2021. PubMed ID: 28115481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contributions of the ventromedial prefrontal cortex to goal-directed action selection.
    O'Doherty JP
    Ann N Y Acad Sci; 2011 Dec; 1239():118-29. PubMed ID: 22145881
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Value-guided remapping of sensory cortex by lateral orbitofrontal cortex.
    Banerjee A; Parente G; Teutsch J; Lewis C; Voigt FF; Helmchen F
    Nature; 2020 Sep; 585(7824):245-250. PubMed ID: 32884146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Orbitofrontal Circuits Control Multiple Reinforcement-Learning Processes.
    Groman SM; Keistler C; Keip AJ; Hammarlund E; DiLeone RJ; Pittenger C; Lee D; Taylor JR
    Neuron; 2019 Aug; 103(4):734-746.e3. PubMed ID: 31253468
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Orbitofrontal cortex supports behavior and learning using inferred but not cached values.
    Jones JL; Esber GR; McDannald MA; Gruber AJ; Hernandez A; Mirenzi A; Schoenbaum G
    Science; 2012 Nov; 338(6109):953-6. PubMed ID: 23162000
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prospective coding of dorsal raphe reward signals by the orbitofrontal cortex.
    Zhou J; Jia C; Feng Q; Bao J; Luo M
    J Neurosci; 2015 Feb; 35(6):2717-30. PubMed ID: 25673861
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of the orbitofrontal cortex in sensory-specific encoding of associations in pavlovian and instrumental conditioning.
    Delamater AR
    Ann N Y Acad Sci; 2007 Dec; 1121():152-73. PubMed ID: 17872387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Encoding of time-discounted rewards in orbitofrontal cortex is independent of value representation.
    Roesch MR; Taylor AR; Schoenbaum G
    Neuron; 2006 Aug; 51(4):509-20. PubMed ID: 16908415
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Medial Orbitofrontal Neurons Preferentially Signal Cues Predicting Changes in Reward during Unblocking.
    Lopatina N; McDannald MA; Styer CV; Peterson JF; Sadacca BF; Cheer JF; Schoenbaum G
    J Neurosci; 2016 Aug; 36(32):8416-24. PubMed ID: 27511013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task.
    Pickens CL; Saddoris MP; Setlow B; Gallagher M; Holland PC; Schoenbaum G
    J Neurosci; 2003 Dec; 23(35):11078-84. PubMed ID: 14657165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Should I stay or should I go? Transformation of time-discounted rewards in orbitofrontal cortex and associated brain circuits.
    Roesch MR; Calu DJ; Burke KA; Schoenbaum G
    Ann N Y Acad Sci; 2007 May; 1104():21-34. PubMed ID: 17344533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid associative encoding in basolateral amygdala depends on connections with orbitofrontal cortex.
    Saddoris MP; Gallagher M; Schoenbaum G
    Neuron; 2005 Apr; 46(2):321-31. PubMed ID: 15848809
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal.
    Frank MJ; Claus ED
    Psychol Rev; 2006 Apr; 113(2):300-326. PubMed ID: 16637763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Separable learning systems in the macaque brain and the role of orbitofrontal cortex in contingent learning.
    Walton ME; Behrens TE; Buckley MJ; Rudebeck PH; Rushworth MF
    Neuron; 2010 Mar; 65(6):927-39. PubMed ID: 20346766
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The contribution of orbitofrontal cortex to action selection.
    Ostlund SB; Balleine BW
    Ann N Y Acad Sci; 2007 Dec; 1121():174-92. PubMed ID: 17872392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.