These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22145929)

  • 1. Post-translational modifications of the serotonin type 4 receptor heterologously expressed in mouse rod cells.
    Salom D; Wang B; Dong Z; Sun W; Padayatti P; Jordan S; Salon JA; Palczewski K
    Biochemistry; 2012 Jan; 51(1):214-24. PubMed ID: 22145929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterologous expression and purification of the serotonin type 4 receptor from transgenic mouse retina.
    Salom D; Wu N; Sun W; Dong Z; Palczewski K; Jordan S; Salon JA
    Biochemistry; 2008 Dec; 47(50):13296-307. PubMed ID: 19053287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The G protein-coupled receptor rhodopsin: a historical perspective.
    Hofmann L; Palczewski K
    Methods Mol Biol; 2015; 1271():3-18. PubMed ID: 25697513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhodopsin: the functional significance of asn-linked glycosylation and other post-translational modifications.
    Murray AR; Fliesler SJ; Al-Ubaidi MR
    Ophthalmic Genet; 2009 Sep; 30(3):109-20. PubMed ID: 19941415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A functional rhodopsin-green fluorescent protein fusion protein localizes correctly in transgenic Xenopus laevis retinal rods and is expressed in a time-dependent pattern.
    Moritz OL; Tam BM; Papermaster DS; Nakayama T
    J Biol Chem; 2001 Jul; 276(30):28242-51. PubMed ID: 11350960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light causes phosphorylation of nonactivated visual pigments in intact mouse rod photoreceptor cells.
    Shi GW; Chen J; Concepcion F; Motamedchaboki K; Marjoram P; Langen R; Chen J
    J Biol Chem; 2005 Dec; 280(50):41184-91. PubMed ID: 16219764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conservation of molecular interactions stabilizing bovine and mouse rhodopsin.
    Kawamura S; Colozo AT; Müller DJ; Park PS
    Biochemistry; 2010 Dec; 49(49):10412-20. PubMed ID: 21038881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods.
    Berry J; Frederiksen R; Yao Y; Nymark S; Chen J; Cornwall C
    J Neurosci; 2016 Jun; 36(26):6973-87. PubMed ID: 27358455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycosylation of rhodopsin is necessary for its stability and incorporation into photoreceptor outer segment discs.
    Murray AR; Vuong L; Brobst D; Fliesler SJ; Peachey NS; Gorbatyuk MS; Naash MI; Al-Ubaidi MR
    Hum Mol Genet; 2015 May; 24(10):2709-23. PubMed ID: 25637522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple phosphorylation sites confer reproducibility of the rod's single-photon responses.
    Doan T; Mendez A; Detwiler PB; Chen J; Rieke F
    Science; 2006 Jul; 313(5786):530-3. PubMed ID: 16873665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of rhodopsin's active lifetime by arrestin-1 expression in mammalian rods.
    Gross OP; Burns ME
    J Neurosci; 2010 Mar; 30(9):3450-7. PubMed ID: 20203204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of rhodopsin alters the structure and photoresponse of rod photoreceptors.
    Wen XH; Shen L; Brush RS; Michaud N; Al-Ubaidi MR; Gurevich VV; Hamm HE; Lem J; Dibenedetto E; Anderson RE; Makino CL
    Biophys J; 2009 Feb; 96(3):939-50. PubMed ID: 19186132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of rhodopsin glycosylation in protein folding, trafficking, and light-sensitive retinal degeneration.
    Tam BM; Moritz OL
    J Neurosci; 2009 Dec; 29(48):15145-54. PubMed ID: 19955366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C-terminal threonines and serines play distinct roles in the desensitization of rhodopsin, a G protein-coupled receptor.
    Azevedo AW; Doan T; Moaven H; Sokal I; Baameur F; Vishnivetskiy SA; Homan KT; Tesmer JJ; Gurevich VV; Chen J; Rieke F
    Elife; 2015 Apr; 4():. PubMed ID: 25910054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ablation of Chop Transiently Enhances Photoreceptor Survival but Does Not Prevent Retinal Degeneration in Transgenic Mice Expressing Human P23H Rhodopsin.
    Chiang WC; Joseph V; Yasumura D; Matthes MT; Lewin AS; Gorbatyuk MS; Ahern K; LaVail MM; Lin JH
    Adv Exp Med Biol; 2016; 854():185-91. PubMed ID: 26427410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and localization of an exogenous G protein-coupled receptor fused with the rhodopsin C-terminal sequence in the retinal rod cells of knockin mice.
    Kodama T; Imai H; Doi T; Chisaka O; Shichida Y; Fujiyoshi Y
    Exp Eye Res; 2005 Jun; 80(6):859-69. PubMed ID: 15939043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional comparison of rod and cone Gα(t) on the regulation of light sensitivity.
    Mao W; Miyagishima KJ; Yao Y; Soreghan B; Sampath AP; Chen J
    J Biol Chem; 2013 Feb; 288(8):5257-67. PubMed ID: 23288843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constitutive "light" adaptation in rods from G90D rhodopsin: a mechanism for human congenital nightblindness without rod cell loss.
    Sieving PA; Fowler ML; Bush RA; Machida S; Calvert PD; Green DG; Makino CL; McHenry CL
    J Neurosci; 2001 Aug; 21(15):5449-60. PubMed ID: 11466416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xenopus laevis P23H rhodopsin transgene causes rod photoreceptor degeneration that is more severe in the ventral retina and is modulated by light.
    Zhang R; Oglesby E; Marsh-Armstrong N
    Exp Eye Res; 2008 Apr; 86(4):612-21. PubMed ID: 18291367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of rhodopsin activity in vision.
    Baylor DA; Burns ME
    Eye (Lond); 1998; 12 ( Pt 3b)():521-5. PubMed ID: 9775212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.