These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 22145929)
21. Effects of carboxyl-terminal truncation on the stability and G protein-coupling activity of bovine rhodopsin. Weiss ER; Osawa S; Shi W; Dickerson CD Biochemistry; 1994 Jun; 33(24):7587-93. PubMed ID: 8011624 [TBL] [Abstract][Full Text] [Related]
26. Transport of truncated rhodopsin and its effects on rod function and degeneration. Lee ES; Flannery JG Invest Ophthalmol Vis Sci; 2007 Jun; 48(6):2868-76. PubMed ID: 17525223 [TBL] [Abstract][Full Text] [Related]
28. Rapid and reproducible deactivation of rhodopsin requires multiple phosphorylation sites. Mendez A; Burns ME; Roca A; Lem J; Wu LW; Simon MI; Baylor DA; Chen J Neuron; 2000 Oct; 28(1):153-64. PubMed ID: 11086991 [TBL] [Abstract][Full Text] [Related]
29. Rhodopsin-regulated insulin receptor signaling pathway in rod photoreceptor neurons. Rajala RV; Anderson RE Mol Neurobiol; 2010 Aug; 42(1):39-47. PubMed ID: 20407846 [TBL] [Abstract][Full Text] [Related]
30. In-silico analysis of claudin-5 reveals novel putative sites for post-translational modifications: Insights into potential molecular determinants of blood-brain barrier breach during HIV-1 infiltration. Awan FM; Anjum S; Obaid A; Ali A; Paracha RZ; Janjua HA Infect Genet Evol; 2014 Oct; 27():355-65. PubMed ID: 25120100 [TBL] [Abstract][Full Text] [Related]
31. A rhodopsin gene mutation responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment. Sung CH; Makino C; Baylor D; Nathans J J Neurosci; 1994 Oct; 14(10):5818-33. PubMed ID: 7523628 [TBL] [Abstract][Full Text] [Related]
32. The carboxyl-terminal domain is essential for rhodopsin transport in rod photoreceptors. Concepcion F; Mendez A; Chen J Vision Res; 2002 Feb; 42(4):417-26. PubMed ID: 11853757 [TBL] [Abstract][Full Text] [Related]
33. Mice with a D190N mutation in the gene encoding rhodopsin: a model for human autosomal-dominant retinitis pigmentosa. Sancho-Pelluz J; Tosi J; Hsu CW; Lee F; Wolpert K; Tabacaru MR; Greenberg JP; Tsang SH; Lin CS Mol Med; 2012 May; 18(1):549-55. PubMed ID: 22252712 [TBL] [Abstract][Full Text] [Related]
34. Expression of functional G protein-coupled receptors in photoreceptors of transgenic Xenopus laevis. Zhang L; Salom D; He J; Okun A; Ballesteros J; Palczewski K; Li N Biochemistry; 2005 Nov; 44(44):14509-18. PubMed ID: 16262251 [TBL] [Abstract][Full Text] [Related]
36. Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant. Chen J; Makino CL; Peachey NS; Baylor DA; Simon MI Science; 1995 Jan; 267(5196):374-7. PubMed ID: 7824934 [TBL] [Abstract][Full Text] [Related]
37. Posttranslational modifications of the photoreceptor-specific ABC transporter ABCA4. Tsybovsky Y; Wang B; Quazi F; Molday RS; Palczewski K Biochemistry; 2011 Aug; 50(32):6855-66. PubMed ID: 21721517 [TBL] [Abstract][Full Text] [Related]
38. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mitton KP; Guzman AE; Deshpande M; Byrd D; DeLooff C; Mkoyan K; Zlojutro P; Wallace A; Metcalf B; Laux K; Sotzen J; Tran T Mol Vis; 2014; 20():1527-44. PubMed ID: 25489226 [TBL] [Abstract][Full Text] [Related]
39. A diffusible factor from normal retinal cells promotes rod photoreceptor survival in an in vitro model of retinitis pigmentosa. Streichert LC; Birnbach CD; Reh TA J Neurobiol; 1999 Jun; 39(4):475-90. PubMed ID: 10380070 [TBL] [Abstract][Full Text] [Related]
40. Effect of AAV-Mediated Rhodopsin Gene Augmentation on Retinal Degeneration Caused by the Dominant P23H Rhodopsin Mutation in a Knock-In Murine Model. Orlans HO; Barnard AR; PatrĂcio MI; McClements ME; MacLaren RE Hum Gene Ther; 2020 Jul; 31(13-14):730-742. PubMed ID: 32394751 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]