BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 22146051)

  • 21. Secreted aspartic proteases as virulence factors of Candida species.
    Monod M; Borg-von ZM
    Biol Chem; 2002; 383(7-8):1087-93. PubMed ID: 12437091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple effects of amprenavir against Candida albicans.
    Braga-Silva LA; Mogami SS; Valle RS; Silva-Neto ID; Santos AL
    FEMS Yeast Res; 2010 Mar; 10(2):221-4. PubMed ID: 20030734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Mechanism of action of aspartic proteases. III. Conformational characteristics of HIV-1 protease inhibitor JG-365].
    Popov ME; Kashparov IV; Rumsh LD; Popov EM
    Bioorg Khim; 1999 Jun; 25(6):418-22. PubMed ID: 10505229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural role of the 30's loop in determining the ligand specificity of the human immunodeficiency virus protease.
    Swairjo MA; Towler EM; Debouck C; Abdel-Meguid SS
    Biochemistry; 1998 Aug; 37(31):10928-36. PubMed ID: 9692985
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two aspartic proteinases secreted by the pathogenic yeast Candida parapsilosis differ in expression pattern and catalytic properties.
    Hrusková-Heidingsfeldová O; Dostál J; Majer F; Havlíkova J; Hradilek M; Pichová I
    Biol Chem; 2009 Mar; 390(3):259-68. PubMed ID: 19166319
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of inhibitor binding to feline and human immunodeficiency virus proteases: structure-based drug design and the resistance problem.
    Dunn BM; Pennington MW; Frase DC; Nash K
    Biopolymers; 1999; 51(1):69-77. PubMed ID: 10380354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibitors of aspartic proteases in human diseases: molecular modeling comes of age.
    Hoegl L; Korting HC; Klebe G
    Pharmazie; 1999 May; 54(5):319-29. PubMed ID: 10368824
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and evaluation of inhibitors of cytochrome P450 3A (CYP3A) for pharmacokinetic enhancement of drugs.
    Flentge CA; Randolph JT; Huang PP; Klein LL; Marsh KC; Harlan JE; Kempf DJ
    Bioorg Med Chem Lett; 2009 Sep; 19(18):5444-8. PubMed ID: 19679477
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A major role for a set of non-active site mutations in the development of HIV-1 protease drug resistance.
    Muzammil S; Ross P; Freire E
    Biochemistry; 2003 Jan; 42(3):631-8. PubMed ID: 12534275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rational design of inhibitors for drug-resistant HIV-1 aspartic protease mutants.
    Frecer V; Miertus S; Tossi A; Romeo D
    Drug Des Discov; 1998 Oct; 15(4):211-31. PubMed ID: 10546067
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of ritonavir and saquinavir on Candida albicans growth rate and in vitro activity of aspartyl proteinases.
    Blanco MT; Hurtado C; Pérez-Giraldo C; Morán FJ; González-Velasco C; Gómez-García AC
    Med Mycol; 2003 Apr; 41(2):167-70. PubMed ID: 12964850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Candida proteases and their inhibition: prospects for antifungal therapy.
    Stewart K; Abad-Zapatero C
    Curr Med Chem; 2001 Jul; 8(8):941-8. PubMed ID: 11375761
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure of a cross-reaction complex between an anti-HIV-1 protease antibody and an HIV-2 protease peptide.
    Rezacova P; Brynda J; Lescar J; Fabry M; Horejsi M; Sieglova I; Sedlacek J; Bentley GA
    J Struct Biol; 2005 Mar; 149(3):332-7. PubMed ID: 15721587
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Domain flexibility in retroviral proteases: structural implications for drug resistant mutations.
    Rose RB; Craik CS; Stroud RM
    Biochemistry; 1998 Feb; 37(8):2607-21. PubMed ID: 9485411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular dynamic and free energy studies of primary resistance mutations in HIV-1 protease-ritonavir complexes.
    Aruksakunwong O; Wolschann P; Hannongbua S; Sompornpisut P
    J Chem Inf Model; 2006; 46(5):2085-92. PubMed ID: 16995739
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discovery of ritonavir, a potent inhibitor of HIV protease with high oral bioavailability and clinical efficacy.
    Kempf DJ; Sham HL; Marsh KC; Flentge CA; Betebenner D; Green BE; McDonald E; Vasavanonda S; Saldivar A; Wideburg NE; Kati WM; Ruiz L; Zhao C; Fino L; Patterson J; Molla A; Plattner JJ; Norbeck DW
    J Med Chem; 1998 Feb; 41(4):602-17. PubMed ID: 9484509
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cloning and characterization of Sapp2p, the second aspartic proteinase isoenzyme from Candida parapsilosis.
    Merkerová M; Dostál J; Hradilek M; Pichová I; Hrusková-Heidingsfeldová O
    FEMS Yeast Res; 2006 Nov; 6(7):1018-26. PubMed ID: 17042751
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The crystal structure of a major secreted aspartic proteinase from Candida albicans in complexes with two inhibitors.
    Cutfield SM; Dodson EJ; Anderson BF; Moody PC; Marshall CJ; Sullivan PA; Cutfield JF
    Structure; 1995 Nov; 3(11):1261-71. PubMed ID: 8591036
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The crystal structure of the secreted aspartic proteinase 3 from Candida albicans and its complex with pepstatin A.
    Borelli C; Ruge E; Schaller M; Monod M; Korting HC; Huber R; Maskos K
    Proteins; 2007 Aug; 68(3):738-48. PubMed ID: 17510964
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissection of the pH dependence of inhibitor binding energetics for an aspartic protease: direct measurement of the protonation states of the catalytic aspartic acid residues.
    Xie D; Gulnik S; Collins L; Gustchina E; Suvorov L; Erickson JW
    Biochemistry; 1997 Dec; 36(51):16166-72. PubMed ID: 9405050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.