BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22146145)

  • 1. Biodynamic response of the seated human body to single-axis and dual-axis vibration: effect of backrest and non-linearity.
    Qiu Y; Griffin MJ
    Ind Health; 2012; 50(1):37-51. PubMed ID: 22146145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodynamic responses of the seated human body to single-axis and dual-axis vibration.
    Qiu Y; Griffin MJ
    Ind Health; 2010; 48(5):615-27. PubMed ID: 20953078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of back support conditions on the apparent mass of seated occupants under horizontal vibration.
    Mandapuram SC; Rakheja S; Shiping MA; Demont RG; Boileau PE
    Ind Health; 2005 Jul; 43(3):421-35. PubMed ID: 16100919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apparent mass and seat-to-head transmissibility responses of seated occupants under single and dual axis horizontal vibration.
    Mandapuram S; Rakheja S; Boileau PÉ; Maeda S; Shibata N
    Ind Health; 2010; 48(5):698-714. PubMed ID: 20953086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency weightings for fore-and-aft vibration at the back: effect of contact location, contact area, and body posture.
    Morioka M; Griffin MJ
    Ind Health; 2010; 48(5):538-49. PubMed ID: 20953071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element modelling of human-seat interactions: vertical in-line and fore-and-aft cross-axis apparent mass when sitting on a rigid seat without backrest and exposed to vertical vibration.
    Liu C; Qiu Y; Griffin MJ
    Ergonomics; 2015; 58(7):1207-19. PubMed ID: 25716324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of support conditions on vertical whole-body vibration of the seated human body.
    M-Pranesh A; Rakheja S; Demont R
    Ind Health; 2010; 48(5):682-97. PubMed ID: 20953085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodynamic response of seated human body to vertical and added lateral and roll vibrations.
    Wu J; Qiu Y; Zhou H
    Ergonomics; 2022 Apr; 65(4):546-560. PubMed ID: 34503399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of elastic seats on seated body apparent mass responses to vertical whole body vibration.
    Dewangan KN; Rakheja S; Marcotte P; Shahmir A
    Ergonomics; 2015; 58(7):1175-90. PubMed ID: 26062686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic forces over the interface between a seated human body and a rigid seat during vertical whole-body vibration.
    Liu C; Qiu Y; Griffin MJ
    J Biomech; 2017 Aug; 61():176-182. PubMed ID: 28780186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of backrest angles on discomfort caused by fore-and-aft back vibration.
    Kato K; Hanai T
    Ind Health; 1998 Apr; 36(2):107-11. PubMed ID: 9583306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the thickness of polyurethane foams at the seat pan and the backrest on fore-and-aft in-line and vertical cross-axis seat transmissibility when sitting with various contact conditions of backrest during fore-and-aft vibration.
    Zhang X; Zhang Q; Li Y; Liu C; Qiu Y
    Appl Ergon; 2021 May; 93():103354. PubMed ID: 33516943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A variable parameter single degree-of-freedom model for predicting the effects of sitting posture and vibration magnitude on the vertical apparent mass of the human body.
    Toward MG; Griffin MJ
    Ind Health; 2010; 48(5):654-62. PubMed ID: 20953082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of the seated human body to whole-body vertical vibration: biodynamic responses to sinusoidal and random vibration.
    Zhou Z; Griffin MJ
    Ergonomics; 2014; 57(5):693-713. PubMed ID: 24730687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The vibration of inclined backrests: perception and discomfort of vibration applied parallel to the back in the z-axis of the body.
    Basri B; Griffin MJ
    Ergonomics; 2011 Dec; 54(12):1214-27. PubMed ID: 22103729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy absorption of seated occupants exposed to horizontal vibration and role of back support condition.
    Rakheja S; Mandapuram S; Dong RG
    Ind Health; 2008 Dec; 46(6):550-66. PubMed ID: 19088407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The apparent mass of the seated human exposed to single-axis and multi-axis whole-body vibration.
    Mansfield NJ; Maeda S
    J Biomech; 2007; 40(11):2543-51. PubMed ID: 17187806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of backrest inclination based on biodynamic response study for prevention of low back pain.
    Shibata N; Maeda S
    Med Eng Phys; 2010 Jul; 32(6):577-83. PubMed ID: 20299270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting discomfort from whole-body vertical vibration when sitting with an inclined backrest.
    Basri B; Griffin MJ
    Appl Ergon; 2013 May; 44(3):423-34. PubMed ID: 23190680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element modelling and biodynamic response prediction of the seated human body exposed to whole-body vibration.
    Gao K; Zhang Z; Lu H; Xu Z; He Y
    Ergonomics; 2023 Dec; 66(12):1854-1867. PubMed ID: 36656143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.