These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A heteromeric complex containing the centromere binding factor 1 and two basic leucine zipper factors, Met4 and Met28, mediates the transcription activation of yeast sulfur metabolism. Kuras L; Cherest H; Surdin-Kerjan Y; Thomas D EMBO J; 1996 May; 15(10):2519-29. PubMed ID: 8665859 [TBL] [Abstract][Full Text] [Related]
3. Assembly of a bZIP-bHLH transcription activation complex: formation of the yeast Cbf1-Met4-Met28 complex is regulated through Met28 stimulation of Cbf1 DNA binding. Kuras L; Barbey R; Thomas D EMBO J; 1997 May; 16(9):2441-51. PubMed ID: 9171357 [TBL] [Abstract][Full Text] [Related]
4. Dissection of combinatorial control by the Met4 transcriptional complex. Lee TA; Jorgensen P; Bognar AL; Peyraud C; Thomas D; Tyers M Mol Biol Cell; 2010 Feb; 21(3):456-69. PubMed ID: 19940020 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional plasticity through differential assembly of a multiprotein activation complex. Cormier L; Barbey R; Kuras L Nucleic Acids Res; 2010 Aug; 38(15):4998-5014. PubMed ID: 20392822 [TBL] [Abstract][Full Text] [Related]
6. A dominant suppressor mutation of the met30 cell cycle defect suggests regulation of the Saccharomyces cerevisiae Met4-Cbf1 transcription complex by Met32. Su NY; Ouni I; Papagiannis CV; Kaiser P J Biol Chem; 2008 Apr; 283(17):11615-24. PubMed ID: 18308733 [TBL] [Abstract][Full Text] [Related]
7. MET4, a leucine zipper protein, and centromere-binding factor 1 are both required for transcriptional activation of sulfur metabolism in Saccharomyces cerevisiae. Thomas D; Jacquemin I; Surdin-Kerjan Y Mol Cell Biol; 1992 Apr; 12(4):1719-27. PubMed ID: 1549123 [TBL] [Abstract][Full Text] [Related]
8. Determinants of the ubiquitin-mediated degradation of the Met4 transcription factor. Menant A; Baudouin-Cornu P; Peyraud C; Tyers M; Thomas D J Biol Chem; 2006 Apr; 281(17):11744-54. PubMed ID: 16497670 [TBL] [Abstract][Full Text] [Related]
9. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights. Gordân R; Murphy KF; McCord RP; Zhu C; Vedenko A; Bulyk ML Genome Biol; 2011 Dec; 12(12):R125. PubMed ID: 22189060 [TBL] [Abstract][Full Text] [Related]
10. Characterizing the roles of Met31 and Met32 in coordinating Met4-activated transcription in the absence of Met30. Carrillo E; Ben-Ari G; Wildenhain J; Tyers M; Grammentz D; Lee TA Mol Biol Cell; 2012 May; 23(10):1928-42. PubMed ID: 22438580 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide inference of transcription factor-DNA binding specificity in cell regeneration using a combination strategy. Wang X; Zhang A; Ren W; Chen C; Dong J Chem Biol Drug Des; 2012 Nov; 80(5):734-44. PubMed ID: 22863142 [TBL] [Abstract][Full Text] [Related]
12. Multiple transcriptional activation complexes tether the yeast activator Met4 to DNA. Blaiseau PL; Thomas D EMBO J; 1998 Nov; 17(21):6327-36. PubMed ID: 9799240 [TBL] [Abstract][Full Text] [Related]
13. Coupling of the transcriptional regulation of glutathione biosynthesis to the availability of glutathione and methionine via the Met4 and Yap1 transcription factors. Wheeler GL; Trotter EW; Dawes IW; Grant CM J Biol Chem; 2003 Dec; 278(50):49920-8. PubMed ID: 14514673 [TBL] [Abstract][Full Text] [Related]
14. Genomic regions flanking E-box binding sites influence DNA binding specificity of bHLH transcription factors through DNA shape. Gordân R; Shen N; Dror I; Zhou T; Horton J; Rohs R; Bulyk ML Cell Rep; 2013 Apr; 3(4):1093-104. PubMed ID: 23562153 [TBL] [Abstract][Full Text] [Related]
15. Integrated approaches reveal determinants of genome-wide binding and function of the transcription factor Pho4. Zhou X; O'Shea EK Mol Cell; 2011 Jun; 42(6):826-36. PubMed ID: 21700227 [TBL] [Abstract][Full Text] [Related]
16. High-resolution DNA-binding specificity analysis of yeast transcription factors. Zhu C; Byers KJ; McCord RP; Shi Z; Berger MF; Newburger DE; Saulrieta K; Smith Z; Shah MV; Radhakrishnan M; Philippakis AA; Hu Y; De Masi F; Pacek M; Rolfs A; Murthy T; Labaer J; Bulyk ML Genome Res; 2009 Apr; 19(4):556-66. PubMed ID: 19158363 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide determinants of sequence-specific DNA binding of general regulatory factors. Rossi MJ; Lai WKM; Pugh BF Genome Res; 2018 Apr; 28(4):497-508. PubMed ID: 29563167 [TBL] [Abstract][Full Text] [Related]
18. Identification of the yeast methionine biosynthetic genes that require the centromere binding factor 1 for their transcriptional activation. Kuras L; Thomas D FEBS Lett; 1995 Jun; 367(1):15-8. PubMed ID: 7601277 [TBL] [Abstract][Full Text] [Related]
19. Sumoylation of DNA-bound transcription factor Sko1 prevents its association with nontarget promoters. Sri Theivakadadcham VS; Bergey BG; Rosonina E PLoS Genet; 2019 Feb; 15(2):e1007991. PubMed ID: 30763307 [TBL] [Abstract][Full Text] [Related]
20. Single point mutations in Met4p impair the transcriptional repression of MET genes in Saccharomyces cerevisiae. Omura F; Fujita A; Shibano Y FEBS Lett; 1996 Jun; 387(2-3):179-83. PubMed ID: 8674545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]