These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 22146707)
1. Production of multi-fiber modifying enzyme from Mamillisphaeria sp. for refining of recycled paper pulp. Laothanachareon T; Khonzue P; Rattanaphan N; Tinnasulanon P; Apawasin S; Paemanee A; Ruanglek V; Tanapongpipat S; Champreda V; Eurwilaichitr L Biosci Biotechnol Biochem; 2011; 75(12):2297-303. PubMed ID: 22146707 [TBL] [Abstract][Full Text] [Related]
2. Optimization of xylanase production from Aspergillus niger for biobleaching of eucalyptus pulp. Khonzue P; Laothanachareon T; Rattanaphan N; Tinnasulanon P; Apawasin S; Paemanee A; Ruanglek V; Tanapongpipat S; Champreda V; Eurwilaichitr L Biosci Biotechnol Biochem; 2011; 75(6):1129-34. PubMed ID: 21670524 [TBL] [Abstract][Full Text] [Related]
3. Production of crude cellulase and xylanase from Trichoderma harzianum PPDDN10 NFCCI-2925 and its application in photocopier waste paper recycling. Pathak P; Bhardwaj NK; Singh AK Appl Biochem Biotechnol; 2014 Apr; 172(8):3776-97. PubMed ID: 24574249 [TBL] [Abstract][Full Text] [Related]
4. Production of cellulolytic and hemicellulolytic enzymes from Aureobasidium pulluans on solid state fermentation. Leite RS; Bocchini DA; Martins Eda S; Silva D; Gomes E; Da Silva R Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):281-8. PubMed ID: 18478395 [TBL] [Abstract][Full Text] [Related]
5. Production of high level of cellulase-poor xylanases by wild strains of white-rot fungus Coprinellus disseminatus in solid-state fermentation. Singh S; Tyagi CH; Dutt D; Upadhyaya JS N Biotechnol; 2009 Oct; 26(3-4):165-70. PubMed ID: 19761879 [TBL] [Abstract][Full Text] [Related]
6. Production of alkali tolerant cellulase free xylanase in high levels by Bacillus pumilus SV-205. Nagar S; Mittal A; Kumar D; Gupta VK Int J Biol Macromol; 2012 Mar; 50(2):414-20. PubMed ID: 22227307 [TBL] [Abstract][Full Text] [Related]
7. Improvement of cellulase and xylanase production by solid-state fermentation of Stachybotrys microspora. Abdeljalil S; Saibi W; Ben Hmad I; Baklouti A; Ben Mahmoud F; Belghith H; Gargouri A Biotechnol Appl Biochem; 2014; 61(4):432-40. PubMed ID: 24372593 [TBL] [Abstract][Full Text] [Related]
8. Production and optimization of cellulase-free, alkali-stable xylanase by Bacillus pumilus SV-85S in submerged fermentation. Nagar S; Gupta VK; Kumar D; Kumar L; Kuhad RC J Ind Microbiol Biotechnol; 2010 Jan; 37(1):71-83. PubMed ID: 19859753 [TBL] [Abstract][Full Text] [Related]
9. Production of cellulase-free endoxylanase from novel alkalophilic thermotolerent Bacillus pumilus by solid-state fermentation and its application in wastepaper recycling. Asha Poorna C; Prema P Bioresour Technol; 2007 Feb; 98(3):485-90. PubMed ID: 16844369 [TBL] [Abstract][Full Text] [Related]
10. Biological pretreatment of rice straw with Streptomyces griseorubens JSD-1 and its optimized production of cellulase and xylanase for improved enzymatic saccharification efficiency. Zhang D; Luo Y; Chu S; Zhi Y; Wang B; Zhou P Prep Biochem Biotechnol; 2016 Aug; 46(6):575-85. PubMed ID: 26443946 [TBL] [Abstract][Full Text] [Related]
11. Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099. Badhan AK; Chadha BS; Kaur J; Saini HS; Bhat MK Bioresour Technol; 2007 Feb; 98(3):504-10. PubMed ID: 16600593 [TBL] [Abstract][Full Text] [Related]
12. An ecofriendly cost effective enzymatic methodology for deinking of school waste paper. Singh A; Yadav RD; Kaur A; Mahajan R Bioresour Technol; 2012 Sep; 120():322-7. PubMed ID: 22796145 [TBL] [Abstract][Full Text] [Related]
13. Alkalistable endo-β-1,4-xylanase production from a newly isolated alkalitolerant Penicillium sp. SS1 using agro-residues. Bajaj BK; Sharma M; Sharma S 3 Biotech; 2011 Sep; 1(2):83-90. PubMed ID: 22582149 [TBL] [Abstract][Full Text] [Related]
14. Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Deswal D; Khasa YP; Kuhad RC Bioresour Technol; 2011 May; 102(10):6065-72. PubMed ID: 21470856 [TBL] [Abstract][Full Text] [Related]
15. Production of xylanase under solid-state fermentation by Aspergillus tubingensis JP-1 and its application. Pandya JJ; Gupte A Bioprocess Biosyst Eng; 2012 Jun; 35(5):769-79. PubMed ID: 22271252 [TBL] [Abstract][Full Text] [Related]
16. Production of a xylose-stimulated β-glucosidase and a cellulase-free thermostable xylanase by the thermophilic fungus Humicola brevis var. thermoidea under solid state fermentation. Masui DC; Zimbardi AL; Souza FH; Guimarães LH; Furriel RP; Jorge JA World J Microbiol Biotechnol; 2012 Aug; 28(8):2689-701. PubMed ID: 22806195 [TBL] [Abstract][Full Text] [Related]
17. Production of thermostable hydrolases (cellulases and xylanase) from Thermoascus aurantiacus RCKK: a potential fungus. Jain KK; Bhanja Dey T; Kumar S; Kuhad RC Bioprocess Biosyst Eng; 2015 Apr; 38(4):787-96. PubMed ID: 25424281 [TBL] [Abstract][Full Text] [Related]
18. Modification of paper properties by the pretreatment of wastepaper pulp with Graphiumputredinis, Trichodermaharzianum and fusant xylanases. Savitha S; Sadhasivam S; Swaminathan K Bioresour Technol; 2009 Jan; 100(2):883-9. PubMed ID: 18723340 [TBL] [Abstract][Full Text] [Related]
19. Optimization of fibrolytic enzyme production by Aspergillus japonicus C03 with potential application in ruminant feed and their effects on tropical forages hydrolysis. Facchini FD; Vici AC; Benassi VM; Freitas LA; Reis RA; Jorge JA; Terenzi HF; Polizeli Mde L Bioprocess Biosyst Eng; 2011 Oct; 34(8):1027-38. PubMed ID: 21647681 [TBL] [Abstract][Full Text] [Related]
20. Bioprocessing of wheat bran for the production of lignocellulolytic enzyme cocktail by Cotylidia pannosa under submerged conditions. Sharma D; Garlapat VK; Goel G Bioengineered; 2016 Apr; 7(2):88-97. PubMed ID: 26941214 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]