These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 22146735)
1. Enzymatic synthesis of 4-pentulosonate (4-keto-D-pentonate) from D-aldopentose and D-pentonate by two different pathways using membrane enzymes of acetic acid bacteria. Adachi O; Hours RA; Shinagawa E; Akakabe Y; Yakushi T; Matsushita K Biosci Biotechnol Biochem; 2011; 75(12):2418-20. PubMed ID: 22146735 [TBL] [Abstract][Full Text] [Related]
2. Formation of 4-keto-D-aldopentoses and 4-pentulosonates (4-keto-D-pentonates) with unidentified membrane-bound enzymes from acetic acid bacteria. Adachi O; Hours RA; Shinagawa E; Akakabe Y; Yakushi T; Matsushita K Biosci Biotechnol Biochem; 2011; 75(9):1801-6. PubMed ID: 21897028 [TBL] [Abstract][Full Text] [Related]
3. Pentose oxidation by acetic acid bacteria led to a finding of membrane-bound purine nucleosidase. Adachi O; Hours RA; Akakabe Y; Shinagawa E; Ano Y; Yakushi T; Matsushita K Biosci Biotechnol Biochem; 2013; 77(5):1131-3. PubMed ID: 23649247 [TBL] [Abstract][Full Text] [Related]
4. Membrane-bound glycerol dehydrogenase catalyzes oxidation of D-pentonates to 4-keto-D-pentonates, D-fructose to 5-keto-D-fructose, and D-psicose to 5-keto-D-psicose. Ano Y; Hours RA; Akakabe Y; Kataoka N; Yakushi T; Matsushita K; Adachi O Biosci Biotechnol Biochem; 2017 Feb; 81(2):411-418. PubMed ID: 27849146 [TBL] [Abstract][Full Text] [Related]
5. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation. Adachi O; Fujii Y; Ano Y; Moonmangmee D; Toyama H; Shinagawa E; Theeragool G; Lotong N; Matsushita K Biosci Biotechnol Biochem; 2001 Jan; 65(1):115-25. PubMed ID: 11272814 [TBL] [Abstract][Full Text] [Related]
6. Aldopentoses as new substrates for the membrane-bound, pyrroloquinoline quinone-dependent glycerol (polyol) dehydrogenase of Gluconobacter sp. Yakushi T; Terada Y; Ozaki S; Kataoka N; Akakabe Y; Adachi O; Matsutani M; Matsushita K Appl Microbiol Biotechnol; 2018 Apr; 102(7):3159-3171. PubMed ID: 29468297 [TBL] [Abstract][Full Text] [Related]
7. L-Xylo-3-hexulose, a new rare sugar produced by the action of acetic acid bacteria on galactitol, an exception to Bertrand Hudson's rule. Xu Y; Chi P; Lv J; Bilal M; Cheng H Biochim Biophys Acta Gen Subj; 2021 Jan; 1865(1):129740. PubMed ID: 32956752 [TBL] [Abstract][Full Text] [Related]
8. Purification and properties of membrane-bound D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3255. Sugisawa T; Hoshino T Biosci Biotechnol Biochem; 2002 Jan; 66(1):57-64. PubMed ID: 11866120 [TBL] [Abstract][Full Text] [Related]
9. Membrane-bound quinoprotein D-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257: a versatile enzyme for the oxidative fermentation of various ketoses. Adachi O; Fujii Y; Ghaly MF; Toyama H; Shinagawa E; Matsushita K Biosci Biotechnol Biochem; 2001 Dec; 65(12):2755-62. PubMed ID: 11826974 [TBL] [Abstract][Full Text] [Related]
10. Identification and characterization of a novel pathway for aldopentose degradation in Acinetobacter baumannii. Alberti L; König P; Zeidler S; Poehlein A; Daniel R; Averhoff B; Müller V Environ Microbiol; 2023 Nov; 25(11):2416-2430. PubMed ID: 37522309 [TBL] [Abstract][Full Text] [Related]
11. New developments in oxidative fermentation. Adachi O; Moonmangmee D; Toyama H; Yamada M; Shinagawa E; Matsushita K Appl Microbiol Biotechnol; 2003 Feb; 60(6):643-53. PubMed ID: 12664142 [TBL] [Abstract][Full Text] [Related]
12. L-arabonate and D-galactonate production by expressing a versatile sugar dehydrogenase in metabolically engineered Escherichia coli. Liu H; Valdehuesa KN; Ramos KR; Nisola GM; Lee WK; Chung WJ Bioresour Technol; 2014 May; 159():455-9. PubMed ID: 24713235 [TBL] [Abstract][Full Text] [Related]
13. Membrane-bound, 2-keto-D-gluconate-yielding D-gluconate dehydrogenase from "Gluconobacter dioxyacetonicus" IFO 3271: molecular properties and gene disruption. Toyama H; Furuya N; Saichana I; Ano Y; Adachi O; Matsushita K Appl Environ Microbiol; 2007 Oct; 73(20):6551-6. PubMed ID: 17720837 [TBL] [Abstract][Full Text] [Related]
14. 5-keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in gluconobacter species. Matsushita K; Fujii Y; Ano Y; Toyama H; Shinjoh M; Tomiyama N; Miyazaki T; Sugisawa T; Hoshino T; Adachi O Appl Environ Microbiol; 2003 Apr; 69(4):1959-66. PubMed ID: 12676670 [TBL] [Abstract][Full Text] [Related]
15. Membrane-bound dehydrogenases from Gluconobacter sp.: interfacial electrochemistry and direct bioelectrocatalysis. Tkac J; Svitel J; Vostiar I; Navratil M; Gemeiner P Bioelectrochemistry; 2009 Sep; 76(1-2):53-62. PubMed ID: 19329366 [TBL] [Abstract][Full Text] [Related]
16. Main polyol dehydrogenase of Gluconobacter suboxydans IFO 3255, membrane-bound D-sorbitol dehydrogenase, that needs product of upstream gene, sldB, for activity. Shinjoh M; Tomiyama N; Miyazaki T; Hoshino T Biosci Biotechnol Biochem; 2002 Nov; 66(11):2314-22. PubMed ID: 12506966 [TBL] [Abstract][Full Text] [Related]
17. Discovering a new catabolic pathway of D-ribonate in Mycobacterium smegmatis. Luo S; Huang H Biochem Biophys Res Commun; 2018 Nov; 505(4):1107-1111. PubMed ID: 30316512 [TBL] [Abstract][Full Text] [Related]
18. Membrane-bound D-sorbitol dehydrogenase of Gluconobacter suboxydans IFO 3255--enzymatic and genetic characterization. Hoshino T; Sugisawa T; Shinjoh M; Tomiyama N; Miyazaki T Biochim Biophys Acta; 2003 Apr; 1647(1-2):278-88. PubMed ID: 12686146 [TBL] [Abstract][Full Text] [Related]
19. 5-Keto-D-fructose production from sugar alcohol by isolated wild strain Adachi O; Nguyen TM; Hours RA; Kataoka N; Matsushita K; Akakabe Y; Yakushi T Biosci Biotechnol Biochem; 2020 Aug; 84(8):1745-1747. PubMed ID: 32427050 [TBL] [Abstract][Full Text] [Related]
20. A novel 3-dehydroquinate dehydratase catalyzing extracellular formation of 3-dehydroshikimate by oxidative fermentation of Gluconobacter oxydans IFO 3244. Adachi O; Ano Y; Toyama H; Matsushita K Biosci Biotechnol Biochem; 2008 Jun; 72(6):1475-82. PubMed ID: 18540103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]