These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 22146879)

  • 1. Fish and Chips: a microfluidic perfusion platform for monitoring zebrafish development.
    Choudhury D; van Noort D; Iliescu C; Zheng B; Poon KL; Korzh S; Korzh V; Yu H
    Lab Chip; 2012 Mar; 12(5):892-900. PubMed ID: 22146879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fish in chips: an automated microfluidic device to study drug dynamics in vivo using zebrafish embryos.
    Zheng C; Zhou H; Liu X; Pang Y; Zhang B; Huang Y
    Chem Commun (Camb); 2014 Jan; 50(8):981-4. PubMed ID: 24305733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of live yeast and zebrafish embryo on a droplet digital microfluidic platform.
    Son SU; Garrell RL
    Lab Chip; 2009 Aug; 9(16):2398-401. PubMed ID: 19636473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos.
    Akagi J; Khoshmanesh K; Evans B; Hall CJ; Crosier KE; Cooper JM; Crosier PS; Wlodkowic D
    PLoS One; 2012; 7(5):e36630. PubMed ID: 22606275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zebrafish embryo development in a microfluidic flow-through system.
    Wielhouwer EM; Ali S; Al-Afandi A; Blom MT; Riekerink MB; Poelma C; Westerweel J; Oonk J; Vrouwe EX; Buesink W; vanMil HG; Chicken J; van't Oever R; Richardson MK
    Lab Chip; 2011 May; 11(10):1815-24. PubMed ID: 21491052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices.
    Chun MS; Shim MS; Choi NW
    Lab Chip; 2006 Feb; 6(2):302-9. PubMed ID: 16450042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish cell line (RTgill-W1)--towards water toxicity testing.
    Glawdel T; Elbuken C; Lee LE; Ren CL
    Lab Chip; 2009 Nov; 9(22):3243-50. PubMed ID: 19865731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multilevel Lab on chip platform for DNA analysis.
    Marasso SL; Giuri E; Canavese G; Castagna R; Quaglio M; Ferrante I; Perrone D; Cocuzza M
    Biomed Microdevices; 2011 Feb; 13(1):19-27. PubMed ID: 20827509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high throughput perfusion-based microbioreactor platform integrated with pneumatic micropumps for three-dimensional cell culture.
    Wu MH; Huang SB; Cui Z; Cui Z; Lee GB
    Biomed Microdevices; 2008 Apr; 10(2):309-19. PubMed ID: 18026840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A practical guide to microfluidic perfusion culture of adherent mammalian cells.
    Kim L; Toh YC; Voldman J; Yu H
    Lab Chip; 2007 Jun; 7(6):681-94. PubMed ID: 17538709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Bubble-Free Microfluidic Device for Easy-to-Operate Immobilization, Culturing and Monitoring of Zebrafish Embryos.
    Zhu Z; Geng Y; Yuan Z; Ren S; Liu M; Meng Z; Pan D
    Micromachines (Basel); 2019 Feb; 10(3):. PubMed ID: 30823425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap.
    Sung JH; Shuler ML
    Biomed Microdevices; 2009 Aug; 11(4):731-8. PubMed ID: 19212816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array.
    Hung PJ; Lee PJ; Sabounchi P; Aghdam N; Lin R; Lee LP
    Lab Chip; 2005 Jan; 5(1):44-8. PubMed ID: 15616739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated chip-based physiometer for automated fish embryo toxicity biotests in pharmaceutical screening and ecotoxicology.
    Akagi J; Zhu F; Hall CJ; Crosier KE; Crosier PS; Wlodkowic D
    Cytometry A; 2014 Jun; 85(6):537-47. PubMed ID: 24664821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A self-contained microfluidic cell culture system.
    Zhang B; Kim MC; Thorsen T; Wang Z
    Biomed Microdevices; 2009 Dec; 11(6):1233-7. PubMed ID: 19629698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple haptotactic gradient generation within a triangular microfluidic channel.
    Park J; Kim DH; Kim G; Kim Y; Choi E; Levchenko A
    Lab Chip; 2010 Aug; 10(16):2130-8. PubMed ID: 20532357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro fluid segment technique for screening and development studies on Danio rerio embryos.
    Funfak A; Brösing A; Brand M; Köhler JM
    Lab Chip; 2007 Sep; 7(9):1132-8. PubMed ID: 17713611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic cell culture platform for real-time cellular imaging.
    Hsieh CC; Huang SB; Wu PC; Shieh DB; Lee GB
    Biomed Microdevices; 2009 Aug; 11(4):903-13. PubMed ID: 19370417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay.
    Lee KH; Su YD; Chen SJ; Tseng FG; Lee GB
    Biosens Bioelectron; 2007 Nov; 23(4):466-72. PubMed ID: 17618110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time 2D visualization of metabolic activities in zebrafish embryos using a microfluidic technology.
    Zhu F; Baker D; Skommer J; Sewell M; Wlodkowic D
    Cytometry A; 2015 May; 87(5):446-50. PubMed ID: 25808962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.