These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 2214712)

  • 1. Kinematics of cytoplasmic deformation in neutrophils during active motion.
    Simon SI; Schmid-Schönbein GW
    J Biomech Eng; 1990 Aug; 112(3):303-10. PubMed ID: 2214712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytoplasmic strains and strain rates in motile polymorphonuclear leukocytes.
    Simon SI; Schmid-Schönbein GW
    Biophys J; 1990 Aug; 58(2):319-32. PubMed ID: 2207240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytoplasmic rheology of passive neutrophils.
    Dong C; Skalak R; Sung KL
    Biorheology; 1991; 28(6):557-67. PubMed ID: 1818744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-dimensional steady continuum model of retraction of pseudopod in leukocytes.
    Zhu C; Skalak R; Schmid-Schönbein GW
    J Biomech Eng; 1989 Feb; 111(1):69-77. PubMed ID: 2747236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical deformation of neutrophils into narrow channels induces pseudopod projection and changes in biomechanical properties.
    Yap B; Kamm RD
    J Appl Physiol (1985); 2005 May; 98(5):1930-9. PubMed ID: 15640383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytoplasmic Flow and Mixing Due to Deformation of Motile Cells.
    Koslover EF; Chan CK; Theriot JA
    Biophys J; 2017 Nov; 113(9):2077-2087. PubMed ID: 29117530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanics of neutrophils: synthetic modeling of three experiments.
    Herant M; Marganski WA; Dembo M
    Biophys J; 2003 May; 84(5):3389-413. PubMed ID: 12719267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular elasticity and viscosity in the body, leading, and trailing regions of locomoting neutrophils.
    Yanai M; Butler JP; Suzuki T; Kanda A; Kurachi M; Tashiro H; Sasaki H
    Am J Physiol; 1999 Sep; 277(3):C432-40. PubMed ID: 10484330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A continuum model of contraction waves and protoplasm streaming in strands of Physarum plasmodium.
    Teplov VA; Romanovsky YuM ; Latushkin OA
    Biosystems; 1991; 24(4):269-89. PubMed ID: 1863716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Passive mechanical behavior of human neutrophils: power-law fluid.
    Tsai MA; Frank RS; Waugh RE
    Biophys J; 1993 Nov; 65(5):2078-88. PubMed ID: 8298037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passive deformations and active motions of leukocytes.
    Skalak R; Dong C; Zhu C
    J Biomech Eng; 1990 Aug; 112(3):295-302. PubMed ID: 2214711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid flow of passive neutrophils into a 4 microns pipet and measurement of cytoplasmic viscosity.
    Needham D; Hochmuth RM
    J Biomech Eng; 1990 Aug; 112(3):269-76. PubMed ID: 2214708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De-activation of neutrophils in suspension by fluid shear stress: a requirement for erythrocytes.
    Komai Y; Schmid-Schönbein GW
    Ann Biomed Eng; 2005 Oct; 33(10):1375-86. PubMed ID: 16240086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bioenergetic mechanism for amoeboid-like cell motility profiles tested in a microfluidic electrotaxis assay.
    Peretz-Soroka H; Tirosh R; Hipolito J; Huebner E; Alexander M; Fiege J; Lin F
    Integr Biol (Camb); 2017 Nov; 9(11):844-856. PubMed ID: 28960219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The leukocyte response to fluid stress.
    Moazzam F; DeLano FA; Zweifach BW; Schmid-Schönbein GW
    Proc Natl Acad Sci U S A; 1997 May; 94(10):5338-43. PubMed ID: 9144238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical models of pseudopod formation.
    Skalak R; Skierczynski BA; Wung SL; Chien S; Usami S
    Blood Cells; 1993; 19(2):389-97; discussion 398-9. PubMed ID: 8312571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive deformation analysis of human leukocytes.
    Dong C; Skalak R; Sung KL; Schmid-Schönbein GW; Chien S
    J Biomech Eng; 1988 Feb; 110(1):27-36. PubMed ID: 3347021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytoskeletal remodeling and cellular activation during deformation of neutrophils into narrow channels.
    Yap B; Kamm RD
    J Appl Physiol (1985); 2005 Dec; 99(6):2323-30. PubMed ID: 16123209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fundamental motor of the human neutrophil is not random: evidence for local non-Markov movement in neutrophils.
    Hartman RS; Lau K; Chou W; Coates TD
    Biophys J; 1994 Dec; 67(6):2535-45. PubMed ID: 7696492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of neutrophil deformation and transport in capillaries using newtonian and viscoelastic drop models.
    Zhou C; Yue P; Feng JJ
    Ann Biomed Eng; 2007 May; 35(5):766-80. PubMed ID: 17380390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.