BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 2214720)

  • 1. Nonlinear analysis of intervertebral disk under dynamic load.
    Natali A; Meroi E
    J Biomech Eng; 1990 Aug; 112(3):358-63. PubMed ID: 2214720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanical behaviour of bony endplate and annulus in prolapsed disc configuration.
    Natali AN; Meroi EA
    J Biomed Eng; 1993 May; 15(3):235-9. PubMed ID: 8320983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hyperelastic and almost incompressible material model as an approach to intervertebral disc analysis.
    Natali AN
    J Biomed Eng; 1991 Mar; 13(2):163-8. PubMed ID: 2033952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Building an effective nonlinear three-dimensional finite-element model of human thoracolumbar spine].
    Zeng ZL; Cheng LM; Zhu R; Wang JJ; Yu Y
    Zhonghua Yi Xue Za Zhi; 2011 Aug; 91(31):2176-80. PubMed ID: 22094033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element simulation of an artificial intervertebral disk using fiber reinforced laminated composite model.
    Shahmohammadi M; Asgharzadeh Shirazi H; Karimi A; Navidbakhsh M
    Tissue Cell; 2014 Oct; 46(5):299-303. PubMed ID: 24981720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanics of load-bearing of the intervertebral disc: an experimental and finite element model.
    Martinez JB; Oloyede VO; Broom ND
    Med Eng Phys; 1997 Mar; 19(2):145-56. PubMed ID: 9203149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion.
    Ueno K; Liu YK
    J Biomech Eng; 1987 Aug; 109(3):200-9. PubMed ID: 3657107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of material properties on the mechanical behaviour of the L5-S1 intervertebral disc in compression: a nonlinear finite element study.
    Rao AA; Dumas GA
    J Biomed Eng; 1991 Mar; 13(2):139-51. PubMed ID: 2033950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study.
    Shirazi-Adl SA; Shrivastava SC; Ahmed AM
    Spine (Phila Pa 1976); 1984 Mar; 9(2):120-34. PubMed ID: 6233710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element modeling of soft tissues: material models, tissue interaction and challenges.
    Freutel M; Schmidt H; Dürselen L; Ignatius A; Galbusera F
    Clin Biomech (Bristol, Avon); 2014 Apr; 29(4):363-72. PubMed ID: 24529470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study.
    Fagan MJ; Julian S; Siddall DJ; Mohsen AM
    Proc Inst Mech Eng H; 2002; 216(5):299-314. PubMed ID: 12365788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite element analysis of the influence of surgical herniation on the viscoelastic properties of the intervertebral disc.
    Furlong DR; Palazotto AN
    J Biomech; 1983; 16(10):785-95. PubMed ID: 6643516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element analyses of human vertebral bodies embedded in polymethylmethalcrylate or loaded via the hyperelastic intervertebral disc models provide equivalent predictions of experimental strength.
    Lu Y; Maquer G; Museyko O; Püschel K; Engelke K; Zysset P; Morlock M; Huber G
    J Biomech; 2014 Jul; 47(10):2512-6. PubMed ID: 24818795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical response of a simple finite element model of the intervertebral disc under complex loading.
    Spilker RL; Daugirda DM; Schultz AB
    J Biomech; 1984; 17(2):103-12. PubMed ID: 6725290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transversely isotropic elasticity imaging of cancellous bone.
    Shore SW; Barbone PE; Oberai AA; Morgan EF
    J Biomech Eng; 2011 Jun; 133(6):061002. PubMed ID: 21744922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple model for the function of proteoglycans and collagen in the response to compression of the intervertebral disc.
    Hukins DW
    Proc Biol Sci; 1992 Sep; 249(1326):281-5. PubMed ID: 1359558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Material constants for a finite element model of the intervertebral disk with a fiber composite annulus.
    Spilker RL; Jakobs DM; Schultz AB
    J Biomech Eng; 1986 Feb; 108(1):1-11. PubMed ID: 3959546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study on the mechanical behavior of intervertebral disc using hyperelastic finite element model.
    Xie F; Zhou H; Zhao W; Huang L
    Technol Health Care; 2017 Jul; 25(S1):177-187. PubMed ID: 28582905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subject-specific multi-validation of a finite element model of ovine cervical functional spinal units.
    Mengoni M; Vasiljeva K; Jones AC; Tarsuslugil SM; Wilcox RK
    J Biomech; 2016 Jan; 49(2):259-66. PubMed ID: 26708919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.