These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 2214726)

  • 1. Automated three-dimensional finite element modelling of bone: a new method.
    Keyak JH; Meagher JM; Skinner HB; Mote CD
    J Biomed Eng; 1990 Sep; 12(5):389-97. PubMed ID: 2214726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional finite element modelling of bone: effects of element size.
    Keyak JH; Skinner HB
    J Biomed Eng; 1992 Nov; 14(6):483-9. PubMed ID: 1434570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of stress variations in single-stance and sideways fall using image-based finite element analysis.
    Faisal TR; Luo Y
    Biomed Mater Eng; 2016 May; 27(1):1-14. PubMed ID: 27175463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved method for the automatic mapping of computed tomography numbers onto finite element models.
    Taddei F; Pancanti A; Viceconti M
    Med Eng Phys; 2004 Jan; 26(1):61-9. PubMed ID: 14644599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Material properties assignment to finite element models of bone structures: a new method.
    Zannoni C; Mantovani R; Viceconti M
    Med Eng Phys; 1998 Dec; 20(10):735-40. PubMed ID: 10223642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of an automated method of three-dimensional finite element modelling of bone.
    Keyak JH; Fourkas MG; Meagher JM; Skinner HB
    J Biomed Eng; 1993 Nov; 15(6):505-9. PubMed ID: 8277756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties.
    Taddei F; Martelli S; Reggiani B; Cristofolini L; Viceconti M
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2194-200. PubMed ID: 17073324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concept and development of an orthotropic FE model of the proximal femur.
    Wirtz DC; Pandorf T; Portheine F; Radermacher K; Schiffers N; Prescher A; Weichert D; Niethard FU
    J Biomech; 2003 Feb; 36(2):289-93. PubMed ID: 12547369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of strength and strain of the proximal femur by a CT-based finite element method.
    Bessho M; Ohnishi I; Matsuyama J; Matsumoto T; Imai K; Nakamura K
    J Biomech; 2007; 40(8):1745-53. PubMed ID: 17034798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical finite element model for bone shape and biomechanical properties.
    Belenguer Querol L; Büchler P; Rueckert D; Nolte LP; González Ballester MA
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):405-11. PubMed ID: 17354916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements.
    Taddei F; Schileo E; Helgason B; Cristofolini L; Viceconti M
    Med Eng Phys; 2007 Nov; 29(9):973-9. PubMed ID: 17169598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer aided stress analysis of long bones utilizing computed tomography.
    Marom SA; Linden MJ
    J Biomech; 1990; 23(5):399-404. PubMed ID: 2373712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image.
    Väänänen SP; Grassi L; Flivik G; Jurvelin JS; Isaksson H
    Med Image Anal; 2015 Aug; 24(1):125-134. PubMed ID: 26148575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the 3-D shape and mechanics of the proximal femur using a shape template and a bone mineral density image.
    Väänänen SP; Isaksson H; Julkunen P; Sirola J; Kröger H; Jurvelin JS
    Biomech Model Mechanobiol; 2011 Jul; 10(4):529-38. PubMed ID: 20809392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subject-specific finite element simulation of the human femur considering inhomogeneous material properties: a straightforward method and convergence study.
    Hölzer A; Schröder C; Woiczinski M; Sadoghi P; Scharpf A; Heimkes B; Jansson V
    Comput Methods Programs Biomed; 2013 Apr; 110(1):82-8. PubMed ID: 23084242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated segmentation of cortical and trabecular bone to generate finite element models for femoral bone mechanics.
    Väänänen SP; Grassi L; Venäläinen MS; Matikka H; Zheng Y; Jurvelin JS; Isaksson H
    Med Eng Phys; 2019 Aug; 70():19-28. PubMed ID: 31280927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses].
    Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P
    Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical bone mapping improves finite element strain prediction accuracy at the proximal femur.
    Schileo E; Pitocchi J; Falcinelli C; Taddei F
    Bone; 2020 Jul; 136():115348. PubMed ID: 32240847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image-based anatomical reconstruction and pharmaco-mediated bone remodeling model applied to a femur with subtrochanteric fracture: A subject-specific finite element study.
    Bahia MT; Hecke MB; Mercuri EGF
    Med Eng Phys; 2019 Jul; 69():58-71. PubMed ID: 31171487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Three Different Crown Heights and Two Different Bone Types on Implants Placed in the Posterior Maxilla: Three-Dimensional Finite Element Analysis.
    Cinar D; Imirzalioglu P
    Int J Oral Maxillofac Implants; 2016; 31(2):e1-e10. PubMed ID: 27004295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.