These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 2214726)

  • 21. Repeatability of digital image correlation for measurement of surface strains in composite long bones.
    Väänänen SP; Amin Yavari S; Weinans H; Zadpoor AA; Jurvelin JS; Isaksson H
    J Biomech; 2013 Jul; 46(11):1928-32. PubMed ID: 23791085
    [TBL] [Abstract][Full Text] [Related]  

  • 22. To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations?
    Schileo E; Balistreri L; Grassi L; Cristofolini L; Taddei F
    J Biomech; 2014 Nov; 47(14):3531-8. PubMed ID: 25261321
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of Regional Difference in Bone Mineral Density on Hip Fracture Site in Elderly Females by Finite Element Analysis.
    Lin ZL; Li PF; Pang ZH; Zheng XH; Huang F; Xu HH; Li QL
    Cell Biochem Biophys; 2015 Nov; 73(2):405-412. PubMed ID: 27352330
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Can CT image deblurring improve finite element predictions at the proximal femur?
    Falcinelli C; Schileo E; Pakdel A; Whyne C; Cristofolini L; Taddei F
    J Mech Behav Biomed Mater; 2016 Oct; 63():337-351. PubMed ID: 27450036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparisons of node-based and element-based approaches of assigning bone material properties onto subject-specific finite element models.
    Chen G; Wu FY; Liu ZC; Yang K; Cui F
    Med Eng Phys; 2015 Aug; 37(8):808-12. PubMed ID: 26054803
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Constructing anisotropic finite element model of bone from computed tomography (CT).
    Kazembakhshi S; Luo Y
    Biomed Mater Eng; 2014; 24(6):2619-26. PubMed ID: 25226965
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sensitivity of proximal femoral stiffness and areal bone mineral density to changes in bone geometry and density.
    Pisharody S; Phillips R; Langton CM
    Proc Inst Mech Eng H; 2008 Apr; 222(3):367-75. PubMed ID: 18491705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping anisotropy of the proximal femur for enhanced image based finite element analysis.
    Enns-Bray WS; Owoc JS; Nishiyama KK; Boyd SK
    J Biomech; 2014 Oct; 47(13):3272-8. PubMed ID: 25219361
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3-D femoral stress analysis using CT scans and p-version FEM.
    Basu PK; Beall AG; Simmons DJ; Vannier M
    Biomater Med Devices Artif Organs; 1985-1986; 13(3-4):163-86. PubMed ID: 3841817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitivity of the stress field of the proximal femur predicted by CT-based FE analysis to modeling uncertainties.
    Youssefian S; Bressner JA; Osanov M; Guest JK; Zbijewski WB; Levin AS
    J Orthop Res; 2022 May; 40(5):1163-1173. PubMed ID: 34191377
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.
    Bourne BC; van der Meulen MC
    J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of femoral fracture load using finite element models: an examination of stress- and strain-based failure theories.
    Keyak JH; Rossi SA
    J Biomech; 2000 Feb; 33(2):209-14. PubMed ID: 10653034
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A three-dimensional finite element model from computed tomography data: a semi-automated method.
    Cattaneo PM; Dalstra M; Frich LH
    Proc Inst Mech Eng H; 2001; 215(2):203-13. PubMed ID: 11382079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Frictional interface micromotions and anisotropic stress distribution in a femoral total hip component.
    Rubin PJ; Rakotomanana RL; Leyvraz PF; Zysset PK; Curnier A; Heegaard JH
    J Biomech; 1993 Jun; 26(6):725-39. PubMed ID: 8514816
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Representation of bone heterogeneity in subject-specific finite element models for knee.
    Au AG; Liggins AB; Raso VJ; Carey J; Amirfazli A
    Comput Methods Programs Biomed; 2010 Aug; 99(2):154-71. PubMed ID: 20022400
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fracture prediction for the proximal femur using finite element models: Part I--Linear analysis.
    Lotz JC; Cheal EJ; Hayes WC
    J Biomech Eng; 1991 Nov; 113(4):353-60. PubMed ID: 1762430
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new method for the automatic mesh generation of bone segments from CT data.
    Viceconti M; Zannoni C; Testi D; Cappello A
    J Med Eng Technol; 1999; 23(2):77-81. PubMed ID: 10356679
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures.
    Müller R; Rüegsegger P
    Med Eng Phys; 1995 Mar; 17(2):126-33. PubMed ID: 7735642
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Finite element analysis on fracture relevance as bone defect of proximal femur].
    Zhang S; Tu CQ; Duan H; Min L; Zhou Y; Zhang SL; Jiang Y; Feng P
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2011 Mar; 42(2):273-6, 279. PubMed ID: 21500571
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Finite element analysis of ramming in Ovis canadensis.
    Maity P; Tekalur SA
    J Biomech Eng; 2011 Feb; 133(2):021009. PubMed ID: 21280881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.