These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 2214731)

  • 1. Simulation study of the fluid dynamics of aorto-coronary bypass.
    Pietrabissa R; Inzoli F; Fumero R
    J Biomed Eng; 1990 Sep; 12(5):419-24. PubMed ID: 2214731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical analysis of steady flow in aorto-coronary bypass 3-D model.
    Inzoli F; Migliavacca F; Pennati G
    J Biomech Eng; 1996 May; 118(2):172-9. PubMed ID: 8738781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsteady simulation of distal blood flow in an end-to-side anastomosed coronary bypass graft with stenosis.
    Najarian S; Dargahi J; Firouzi F; Afsari J
    Biomed Mater Eng; 2006; 16(5):337-47. PubMed ID: 17075169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional numerical simulations of flow through a stenosed coronary bypass.
    Bertolotti C; Deplano V
    J Biomech; 2000 Aug; 33(8):1011-22. PubMed ID: 10828332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel coronary artery bypass graft design of sequential anastomoses.
    Kabinejadian F; Chua LP; Ghista DN; Sankaranarayanan M; Tan YS
    Ann Biomed Eng; 2010 Oct; 38(10):3135-50. PubMed ID: 20496004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid flow structure in arterial bypass anastomosis.
    Su CM; Lee D; Tran-Son-Tay R; Shyy W
    J Biomech Eng; 2005 Aug; 127(4):611-8. PubMed ID: 16121531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts.
    Leuprecht A; Perktold K; Prosi M; Berk T; Trubel W; Schima H
    J Biomech; 2002 Feb; 35(2):225-36. PubMed ID: 11784541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of graft-host diameter ratio on the hemodynamics of CABG.
    Qiao A; Liu Y
    Biomed Mater Eng; 2006; 16(3):189-201. PubMed ID: 16518018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Longer coronary anastomosis provides lower energy loss in coronary artery bypass grafting.
    Tsukui H; Shinke M; Park YK; Yamazaki K
    Heart Vessels; 2017 Jan; 32(1):83-89. PubMed ID: 27484320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational fluid dynamic study of multiple sequential coronary artery bypass anastomoses in a native coronary stenosis model.
    Matsuura K; Jin WW; Liu H; Matsumiya G
    Coron Artery Dis; 2020 Aug; 31(5):458-463. PubMed ID: 32271246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of top end anastomosis design on patency and flow stability in coronary artery bypass grafting.
    Koyama S; Kitamura T; Itatani K; Yamamoto T; Miyazaki S; Oka N; Nakashima K; Horai T; Ono M; Miyaji K
    Heart Vessels; 2016 May; 31(5):643-8. PubMed ID: 25910614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical analysis of non-Newtonian blood flow and wall shear stress in realistic single, double and triple aorto-coronary bypasses.
    Vimmr J; Jonášová A; Bublík O
    Int J Numer Method Biomed Eng; 2013 Oct; 29(10):1057-81. PubMed ID: 23733715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow studies in three-dimensional aorto-right coronary bypass graft system.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    J Med Eng Technol; 2006; 30(5):269-82. PubMed ID: 16980282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical analysis of blood flow through a stenosed artery using a coupled, multiscale simulation method.
    Shim EB; Kamm RD; Heldt T; Mark RG
    Comput Cardiol; 2000; 27():219-22. PubMed ID: 12085933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A one-dimensional finite element method for simulation-based medical planning for cardiovascular disease.
    Wan J; Steele B; Spicer SA; Strohband S; Feijóo GR; Hughes TJ; Taylor CA
    Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):195-206. PubMed ID: 12186712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational fluid dynamics study of the end-side and sequential coronary artery bypass anastomoses in a native coronary occlusion model.
    Matsuura K; Jin WW; Liu H; Matsumiya G
    Interact Cardiovasc Thorac Surg; 2018 Apr; 26(4):583-589. PubMed ID: 29190348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational fluid dynamics simulation study of coronary blood flow affected by graft placement†.
    Lassaline JV; Moon BC
    Interact Cardiovasc Thorac Surg; 2014 Jul; 19(1):16-20. PubMed ID: 24760796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of coronary artery revascularization.
    Watts KC; Marble AE; Sarwal SN; Kinley CE; Watton J; Mason MA
    J Biomech; 1986; 19(7):491-9. PubMed ID: 3488994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.