These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 22147515)
41. A new coral structure TiO2/Ti film electrode applied to photoelectrocatalytic degradation of Reactive Brilliant Red. Hua XS; Zhang YJ; Ma NH; Li XF; Wang HW J Hazard Mater; 2009 Dec; 172(1):256-61. PubMed ID: 19632772 [TBL] [Abstract][Full Text] [Related]
42. Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells. Wang H; Bai Y; Wu Q; Zhou W; Zhang H; Li J; Guo L Phys Chem Chem Phys; 2011 Apr; 13(15):7008-13. PubMed ID: 21399795 [TBL] [Abstract][Full Text] [Related]
43. Water-soluble polyelectrolyte-grafted multiwalled carbon nanotube thin films for efficient counter electrode of dye-sensitized solar cells. Han J; Kim H; Kim DY; Jo SM; Jang SY ACS Nano; 2010 Jun; 4(6):3503-9. PubMed ID: 20509667 [TBL] [Abstract][Full Text] [Related]
44. Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting. Das C; Roy P; Yang M; Jha H; Schmuki P Nanoscale; 2011 Aug; 3(8):3094-6. PubMed ID: 21761039 [TBL] [Abstract][Full Text] [Related]
45. Surface-treated TiO2 nanoparticles for dye-sensitized solar cells with remarkably enhanced performance. Xin X; Scheiner M; Ye M; Lin Z Langmuir; 2011 Dec; 27(23):14594-8. PubMed ID: 22013973 [TBL] [Abstract][Full Text] [Related]
46. Highly efficient solar cells using TiO(2) nanotube arrays sensitized with a donor-antenna dye. Shankar K; Bandara J; Paulose M; Wietasch H; Varghese OK; Mor GK; LaTempa TJ; Thelakkat M; Grimes CA Nano Lett; 2008 Jun; 8(6):1654-9. PubMed ID: 18444689 [TBL] [Abstract][Full Text] [Related]
47. Thermo-stable carbon nanotube-TiO₂ nanocompsite as electron highways in dye-sensitized solar cell produced by bio-nano-process. Inoue I; Yamauchi H; Okamoto N; Toyoda K; Horita M; Ishikawa Y; Yasueda H; Uraoka Y; Yamashita I Nanotechnology; 2015 Jul; 26(28):285601. PubMed ID: 26112188 [TBL] [Abstract][Full Text] [Related]
48. Carbon nanohorns as integrative materials for efficient dye-sensitized solar cells. Costa RD; Feihl S; Kahnt A; Gambhir S; Officer DL; Wallace GG; Lucio MI; Herrero MA; Vázquez E; Syrgiannis Z; Prato M; Guldi DM Adv Mater; 2013 Dec; 25(45):6513-8. PubMed ID: 23996616 [TBL] [Abstract][Full Text] [Related]
49. Fabrication of highly ordered TiO2 nanorod/nanotube adjacent arrays for photoelectrochemical applications. Zhang H; Liu P; Liu X; Zhang S; Yao X; An T; Amal R; Zhao H Langmuir; 2010 Jul; 26(13):11226-32. PubMed ID: 20384304 [TBL] [Abstract][Full Text] [Related]
50. Synthesis of poly(3-hexylthiophene) grafted TiO2 nanotube composite. Lu MD; Yang SM J Colloid Interface Sci; 2009 May; 333(1):128-34. PubMed ID: 19246046 [TBL] [Abstract][Full Text] [Related]
51. Double-sided anodic titania nanotube arrays: a lopsided growth process. Sun L; Zhang S; Sun XW; Wang X; Cai Y Langmuir; 2010 Dec; 26(23):18424-9. PubMed ID: 21049918 [TBL] [Abstract][Full Text] [Related]
52. Dye-sensitized TiO2 nanotube solar cells: rational structural and surface engineering on TiO2 nanotubes. Wang J; Lin Z Chem Asian J; 2012 Dec; 7(12):2754-62. PubMed ID: 22711337 [TBL] [Abstract][Full Text] [Related]
53. Investigation on the dynamics of electron transport and recombination in TiO2 nanotube/nanoparticle composite electrodes for dye-sensitized solar cells. Mohammadpour R; Iraji zad A; Hagfeldt A; Boschloo G Phys Chem Chem Phys; 2011 Dec; 13(48):21487-91. PubMed ID: 22051895 [TBL] [Abstract][Full Text] [Related]
54. Selective formation of ordered arrays of octacalcium phosphate ribbons on TiO(2) nanotube surface by template-assisted electrodeposition. Lai Y; Huang Y; Wang H; Huang J; Chen Z; Lin C Colloids Surf B Biointerfaces; 2010 Mar; 76(1):117-22. PubMed ID: 19900795 [TBL] [Abstract][Full Text] [Related]
55. Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length. Paulose M; Shankar K; Yoriya S; Prakasam HE; Varghese OK; Mor GK; LaTempa TJ; Fitzgerald A; Grimes CA J Phys Chem B; 2006 Aug; 110(33):16179-84. PubMed ID: 16913737 [TBL] [Abstract][Full Text] [Related]
56. A novel preparation of small TiO₂ nanoparticle and its application to dye-sensitized solar cells with binder-free paste at low temperature. Fan K; Gong C; Peng T; Chen J; Xia J Nanoscale; 2011 Sep; 3(9):3900-6. PubMed ID: 21845275 [TBL] [Abstract][Full Text] [Related]
57. Hydrothermal growth of TiO2 nanorod arrays and in situ conversion to nanotube arrays for highly efficient quantum dot-sensitized solar cells. Huang H; Pan L; Lim CK; Gong H; Guo J; Tse MS; Tan OK Small; 2013 Sep; 9(18):3153-60. PubMed ID: 23606243 [TBL] [Abstract][Full Text] [Related]
58. Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells. He Z; Guai G; Liu J; Guo C; Loo JS; Li CM; Tan TT Nanoscale; 2011 Nov; 3(11):4613-6. PubMed ID: 22006266 [TBL] [Abstract][Full Text] [Related]
59. Microwave assisted CdSe quantum dot deposition on TiO2 films for dye-sensitized solar cells. Zhu G; Pan L; Xu T; Zhao Q; Lu B; Sun Z Nanoscale; 2011 May; 3(5):2188-93. PubMed ID: 21451826 [TBL] [Abstract][Full Text] [Related]
60. A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Kafi AK; Wu G; Chen A Biosens Bioelectron; 2008 Dec; 24(4):566-71. PubMed ID: 18640021 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]