These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 22147552)
1. Size evolution of gold nanoparticles in a millifluidic reactor. Li Y; Sanampudi A; Raji Reddy V; Biswas S; Nandakumar K; Yemane D; Goettert J; Kumar CS Chemphyschem; 2012 Jan; 13(1):177-82. PubMed ID: 22147552 [TBL] [Abstract][Full Text] [Related]
2. Understanding of the size control of biocompatible gold nanoparticles in millifluidic channels. Jun H; Fabienne T; Florent M; Coulon PE; Nicolas M; Olivier S Langmuir; 2012 Nov; 28(45):15966-74. PubMed ID: 23116539 [TBL] [Abstract][Full Text] [Related]
3. Developing a millifluidic platform for the synthesis of ultrasmall nanoclusters: ultrasmall copper nanoclusters as a case study. Biswas S; Miller JT; Li Y; Nandakumar K; Kumar CS Small; 2012 Mar; 8(5):687-98. PubMed ID: 22298499 [TBL] [Abstract][Full Text] [Related]
4. New preparation method of gold nanoparticles on SiO2. Zanella R; Sandoval A; Santiago P; Basiuk VA; Saniger JM J Phys Chem B; 2006 May; 110(17):8559-65. PubMed ID: 16640406 [TBL] [Abstract][Full Text] [Related]
5. Experimental and DFT studies of gold nanoparticles supported on MgO(111) nano-sheets and their catalytic activity. Li Z; Ciobanu CV; Hu J; Palomares-Báez JP; Rodríguez-López JL; Richards R Phys Chem Chem Phys; 2011 Feb; 13(7):2582-9. PubMed ID: 21243143 [TBL] [Abstract][Full Text] [Related]
6. A simple millifluidic benchtop reactor system for the high-throughput synthesis and functionalization of gold nanoparticles with different sizes and shapes. Lohse SE; Eller JR; Sivapalan ST; Plews MR; Murphy CJ ACS Nano; 2013 May; 7(5):4135-50. PubMed ID: 23634842 [TBL] [Abstract][Full Text] [Related]
7. Modulation of size and shape of Au nanoparticles using amino-X-shaped poly(ethylene oxide)-poly(propylene oxide) block copolymers. Goy-López S; Taboada P; Cambón A; Juárez J; Alvarez-Lorenzo C; Concheiro A; Mosquera V J Phys Chem B; 2010 Jan; 114(1):66-76. PubMed ID: 19968275 [TBL] [Abstract][Full Text] [Related]
8. Millifluidic synthesis of amorphous drug-polysaccharide nanoparticle complex with tunable size intended for supersaturating drug delivery applications. Tran TT; Nguyen MH; Tan YZ; Chew JW; Khan SA; Hadinoto K Eur J Pharm Biopharm; 2017 Mar; 112():196-203. PubMed ID: 27903456 [TBL] [Abstract][Full Text] [Related]
9. Strategies to control the particle size distribution of poly-epsilon-caprolactone nanoparticles for pharmaceutical applications. Lince F; Marchisio DL; Barresi AA J Colloid Interface Sci; 2008 Jun; 322(2):505-15. PubMed ID: 18402975 [TBL] [Abstract][Full Text] [Related]
10. Comparison study of the solution phase versus solid phase place exchange reactions in the controlled functionalization of gold nanoparticles. Shaffer AW; Worden JG; Huo Q Langmuir; 2004 Sep; 20(19):8343-51. PubMed ID: 15350112 [TBL] [Abstract][Full Text] [Related]
11. High-temperature and high-pressure pulsed synthesis apparatus for supercritical production of nanoparticles. Eltzholtz JR; Iversen BB Rev Sci Instrum; 2011 Aug; 82(8):084102. PubMed ID: 21895256 [TBL] [Abstract][Full Text] [Related]
12. The effect of high intensity ultrasound on the loading of Au nanoparticles into titanium dioxide. Belova V; Borodina T; Möhwald H; Shchukin DG Ultrason Sonochem; 2011 Jan; 18(1):310-7. PubMed ID: 20638889 [TBL] [Abstract][Full Text] [Related]
15. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Saha S; Pal A; Kundu S; Basu S; Pal T Langmuir; 2010 Feb; 26(4):2885-93. PubMed ID: 19957940 [TBL] [Abstract][Full Text] [Related]
16. Effect of concentration of methanol for the control of particle size and size-dependent SERS studies. Praharaj S; Jana S; Kundu S; Pande S; Pal T J Colloid Interface Sci; 2009 May; 333(2):699-706. PubMed ID: 19232637 [TBL] [Abstract][Full Text] [Related]
17. Preparation of near-infrared light absorbing gold nanoparticles using polyethylene glycol-attached dendrimers. Kojima C; Umeda Y; Harada A; Kono K Colloids Surf B Biointerfaces; 2010 Dec; 81(2):648-51. PubMed ID: 20801621 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and cytotoxicity assessment of superparamagnetic iron-gold core-shell nanoparticles coated with polyglycerol. Jafari T; Simchi A; Khakpash N J Colloid Interface Sci; 2010 May; 345(1):64-71. PubMed ID: 20153479 [TBL] [Abstract][Full Text] [Related]
19. Direct deposition of size-tunable Au nanoparticles on silicon oxide nanowires. Kim JH; An HH; Kim HS; Kim YH; Yoon CS J Colloid Interface Sci; 2009 Sep; 337(1):289-93. PubMed ID: 19477456 [TBL] [Abstract][Full Text] [Related]
20. Formation process of two-dimensional networked gold nanowires by citrate reduction of AuCl4- and the shape stabilization. Pei L; Mori K; Adachi M Langmuir; 2004 Aug; 20(18):7837-43. PubMed ID: 15323538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]