These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 22147707)
1. Insights into high affinity small ubiquitin-like modifier (SUMO) recognition by SUMO-interacting motifs (SIMs) revealed by a combination of NMR and peptide array analysis. Namanja AT; Li YJ; Su Y; Wong S; Lu J; Colson LT; Wu C; Li SS; Chen Y J Biol Chem; 2012 Jan; 287(5):3231-40. PubMed ID: 22147707 [TBL] [Abstract][Full Text] [Related]
2. Isoform-specific monobody inhibitors of small ubiquitin-related modifiers engineered using structure-guided library design. Gilbreth RN; Truong K; Madu I; Koide A; Wojcik JB; Li NS; Piccirilli JA; Chen Y; Koide S Proc Natl Acad Sci U S A; 2011 May; 108(19):7751-6. PubMed ID: 21518904 [TBL] [Abstract][Full Text] [Related]
3. Specification of SUMO1- and SUMO2-interacting motifs. Hecker CM; Rabiller M; Haglund K; Bayer P; Dikic I J Biol Chem; 2006 Jun; 281(23):16117-27. PubMed ID: 16524884 [TBL] [Abstract][Full Text] [Related]
4. Characterizing the N- and C-terminal Small ubiquitin-like modifier (SUMO)-interacting motifs of the scaffold protein DAXX. Escobar-Cabrera E; Okon M; Lau DK; Dart CF; Bonvin AM; McIntosh LP J Biol Chem; 2011 Jun; 286(22):19816-29. PubMed ID: 21383010 [TBL] [Abstract][Full Text] [Related]
5. Identification of a new small ubiquitin-like modifier (SUMO)-interacting motif in the E3 ligase PIASy. Kaur K; Park H; Pandey N; Azuma Y; De Guzman RN J Biol Chem; 2017 Jun; 292(24):10230-10238. PubMed ID: 28455449 [TBL] [Abstract][Full Text] [Related]
6. SUMO paralogue-specific functions revealed through systematic analysis of human knockout cell lines and gene expression data. Bouchard D; Wang W; Yang WC; He S; Garcia A; Matunis MJ Mol Biol Cell; 2021 Sep; 32(19):1849-1866. PubMed ID: 34232706 [TBL] [Abstract][Full Text] [Related]
7. Swapping small ubiquitin-like modifier (SUMO) isoform specificity of SUMO proteases SENP6 and SENP7. Alegre KO; Reverter D J Biol Chem; 2011 Oct; 286(41):36142-36151. PubMed ID: 21878624 [TBL] [Abstract][Full Text] [Related]
8. Structural Analysis of a Complex between Small Ubiquitin-like Modifier 1 (SUMO1) and the ZZ Domain of CREB-binding Protein (CBP/p300) Reveals a New Interaction Surface on SUMO. Diehl C; Akke M; Bekker-Jensen S; Mailand N; Streicher W; Wikström M J Biol Chem; 2016 Jun; 291(24):12658-12672. PubMed ID: 27129204 [TBL] [Abstract][Full Text] [Related]
9. Structural analysis of poly-SUMO chain recognition by the RNF4-SIMs domain. Kung CC; Naik MT; Wang SH; Shih HM; Chang CC; Lin LY; Chen CL; Ma C; Chang CF; Huang TH Biochem J; 2014 Aug; 462(1):53-65. PubMed ID: 24844634 [TBL] [Abstract][Full Text] [Related]
10. Characterization of a C-Terminal SUMO-Interacting Motif Present in Select PIAS-Family Proteins. Lussier-Price M; Mascle XH; Cappadocia L; Kamada R; Sakaguchi K; Wahba HM; Omichinski JG Structure; 2020 May; 28(5):573-585.e5. PubMed ID: 32348746 [TBL] [Abstract][Full Text] [Related]
11. Structure of the small ubiquitin-like modifier (SUMO)-interacting motif of MBD1-containing chromatin-associated factor 1 bound to SUMO-3. Sekiyama N; Ikegami T; Yamane T; Ikeguchi M; Uchimura Y; Baba D; Ariyoshi M; Tochio H; Saitoh H; Shirakawa M J Biol Chem; 2008 Dec; 283(51):35966-75. PubMed ID: 18842587 [TBL] [Abstract][Full Text] [Related]
12. Insights into the Microscopic Structure of RNF4-SIM-SUMO Complexes from MD Simulations. Kötter A; Mootz HD; Heuer A Biophys J; 2020 Oct; 119(8):1558-1567. PubMed ID: 32976759 [TBL] [Abstract][Full Text] [Related]
13. Distribution and paralogue specificity of mammalian deSUMOylating enzymes. Kolli N; Mikolajczyk J; Drag M; Mukhopadhyay D; Moffatt N; Dasso M; Salvesen G; Wilkinson KD Biochem J; 2010 Sep; 430(2):335-44. PubMed ID: 20590526 [TBL] [Abstract][Full Text] [Related]
14. Identification and Characterization of SUMO-SIM Interactions. Husnjak K; Keiten-Schmitz J; Müller S Methods Mol Biol; 2016; 1475():79-98. PubMed ID: 27631799 [TBL] [Abstract][Full Text] [Related]
15. Molecular Basis for Phosphorylation-dependent SUMO Recognition by the DNA Repair Protein RAP80. Anamika ; Spyracopoulos L J Biol Chem; 2016 Feb; 291(9):4417-28. PubMed ID: 26719330 [TBL] [Abstract][Full Text] [Related]
16. Casein kinase-2-mediated phosphorylation increases the SUMO-dependent activity of the cytomegalovirus transactivator IE2. Tripathi V; Chatterjee KS; Das R J Biol Chem; 2019 Oct; 294(40):14546-14561. PubMed ID: 31371453 [TBL] [Abstract][Full Text] [Related]
17. Assessing the Role of Paralog-Specific Sumoylation of HDAC1. Citro S; Chiocca S Methods Mol Biol; 2017; 1510():329-337. PubMed ID: 27761832 [TBL] [Abstract][Full Text] [Related]
18. A role for non-covalent SUMO interaction motifs in Pc2/CBX4 E3 activity. Merrill JC; Melhuish TA; Kagey MH; Yang SH; Sharrocks AD; Wotton D PLoS One; 2010 Jan; 5(1):e8794. PubMed ID: 20098713 [TBL] [Abstract][Full Text] [Related]
19. Characterizing the Conformational Dynamics of Human SUMO2: Insights into its Interaction with Metal Ions and SIMs. Kaur A; Singh H; Kumar D; Gahlay GK; Mithu VS Chembiochem; 2024 Jun; 25(11):e202400045. PubMed ID: 38593270 [TBL] [Abstract][Full Text] [Related]
20. Design of high-throughput screening assays and identification of a SUMO1-specific small molecule chemotype targeting the SUMO-interacting motif-binding surface. Alontaga AY; Li Y; Chen CH; Ma CT; Malany S; Key DE; Sergienko E; Sun Q; Whipple DA; Matharu DS; Li B; Vega R; Li YJ; Schoenen FJ; Blagg BS; Chung TD; Chen Y ACS Comb Sci; 2015 Apr; 17(4):239-46. PubMed ID: 25719760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]