BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 22147710)

  • 1. Second extracellular loop of human glucagon-like peptide-1 receptor (GLP-1R) has a critical role in GLP-1 peptide binding and receptor activation.
    Koole C; Wootten D; Simms J; Miller LJ; Christopoulos A; Sexton PM
    J Biol Chem; 2012 Feb; 287(6):3642-58. PubMed ID: 22147710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Second extracellular loop of human glucagon-like peptide-1 receptor (GLP-1R) differentially regulates orthosteric but not allosteric agonist binding and function.
    Koole C; Wootten D; Simms J; Savage EE; Miller LJ; Christopoulos A; Sexton PM
    J Biol Chem; 2012 Feb; 287(6):3659-73. PubMed ID: 22147709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential impact of amino acid substitutions on critical residues of the human glucagon-like peptide-1 receptor involved in peptide activity and small-molecule allostery.
    Koole C; Wootten D; Simms J; Miller LJ; Christopoulos A; Sexton PM
    J Pharmacol Exp Ther; 2015 Apr; 353(1):52-63. PubMed ID: 25630467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residues within the transmembrane domain of the glucagon-like peptide-1 receptor involved in ligand binding and receptor activation: modelling the ligand-bound receptor.
    Coopman K; Wallis R; Robb G; Brown AJ; Wilkinson GF; Timms D; Willars GB
    Mol Endocrinol; 2011 Oct; 25(10):1804-18. PubMed ID: 21868452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand binding pocket formed by evolutionarily conserved residues in the glucagon-like peptide-1 (GLP-1) receptor core domain.
    Moon MJ; Lee YN; Park S; Reyes-Alcaraz A; Hwang JI; Millar RP; Choe H; Seong JY
    J Biol Chem; 2015 Feb; 290(9):5696-706. PubMed ID: 25561730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progesterone receptor membrane component 1 is a functional part of the glucagon-like peptide-1 (GLP-1) receptor complex in pancreatic β cells.
    Zhang M; Robitaille M; Showalter AD; Huang X; Liu Y; Bhattacharjee A; Willard FS; Han J; Froese S; Wei L; Gaisano HY; Angers S; Sloop KW; Dai FF; Wheeler MB
    Mol Cell Proteomics; 2014 Nov; 13(11):3049-62. PubMed ID: 25044020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Determinants of Binding the Seven-transmembrane Domain of the Glucagon-like Peptide-1 Receptor (GLP-1R).
    Yang D; de Graaf C; Yang L; Song G; Dai A; Cai X; Feng Y; Reedtz-Runge S; Hanson MA; Yang H; Jiang H; Stevens RC; Wang MW
    J Biol Chem; 2016 Jun; 291(25):12991-3004. PubMed ID: 27059958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymorphism and ligand dependent changes in human glucagon-like peptide-1 receptor (GLP-1R) function: allosteric rescue of loss of function mutation.
    Koole C; Wootten D; Simms J; Valant C; Miller LJ; Christopoulos A; Sexton PM
    Mol Pharmacol; 2011 Sep; 80(3):486-97. PubMed ID: 21616920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional coupling of Cys-226 and Cys-296 in the glucagon-like peptide-1 (GLP-1) receptor indicates a disulfide bond that is close to the activation pocket.
    Mann RJ; Al-Sabah S; de Maturana RL; Sinfield JK; Donnelly D
    Peptides; 2010 Dec; 31(12):2289-93. PubMed ID: 20869417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucagon-like peptide-1 receptor dimerization differentially regulates agonist signaling but does not affect small molecule allostery.
    Harikumar KG; Wootten D; Pinon DI; Koole C; Ball AM; Furness SG; Graham B; Dong M; Christopoulos A; Miller LJ; Sexton PM
    Proc Natl Acad Sci U S A; 2012 Nov; 109(45):18607-12. PubMed ID: 23091034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two distinct domains of the glucagon-like peptide-1 receptor control peptide-mediated biased agonism.
    Lei S; Clydesdale L; Dai A; Cai X; Feng Y; Yang D; Liang YL; Koole C; Zhao P; Coudrat T; Christopoulos A; Wang MW; Wootten D; Sexton PM
    J Biol Chem; 2018 Jun; 293(24):9370-9387. PubMed ID: 29717000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionarily conserved residues at glucagon-like peptide-1 (GLP-1) receptor core confer ligand-induced receptor activation.
    Moon MJ; Kim HY; Park S; Kim DK; Cho EB; Park CR; You DJ; Hwang JI; Kim K; Choe H; Seong JY
    J Biol Chem; 2012 Feb; 287(6):3873-84. PubMed ID: 22105074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allosteric modulation of the activity of the glucagon-like peptide-1 (GLP-1) metabolite GLP-1 9-36 amide at the GLP-1 receptor.
    Li N; Lu J; Willars GB
    PLoS One; 2012; 7(10):e47936. PubMed ID: 23094100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of signal bias at the GLP-1 receptor induced by backbone modification of GLP-1.
    Hager MV; Clydesdale L; Gellman SH; Sexton PM; Wootten D
    Biochem Pharmacol; 2017 Jul; 136():99-108. PubMed ID: 28363772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmembrane α-helix 2 and 7 are important for small molecule-mediated activation of the GLP-1 receptor.
    Rye Underwood C; Møller Knudsen S; Schjellerup Wulff B; Bräuner-Osborne H; Lau J; Knudsen LB; Peters GH; Reedtz-Runge S
    Pharmacology; 2011; 88(5-6):340-8. PubMed ID: 22134089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New screening strategy and analysis for identification of allosteric modulators for glucagon-like peptide-1 receptor using GLP-1 (9-36) amide.
    Nakane A; Gotoh Y; Ichihara J; Nagata H
    Anal Biochem; 2015 Dec; 491():23-30. PubMed ID: 26341912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The glucagon-like peptide-2 receptor C terminus modulates beta-arrestin-2 association but is dispensable for ligand-induced desensitization, endocytosis, and G-protein-dependent effector activation.
    Estall JL; Koehler JA; Yusta B; Drucker DJ
    J Biol Chem; 2005 Jun; 280(23):22124-34. PubMed ID: 15817468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonconventional glucagon and GLP-1 receptor agonist and antagonist interplay at the GLP-1 receptor revealed in high-throughput FRET assays for cAMP.
    Chepurny OG; Matsoukas MT; Liapakis G; Leech CA; Milliken BT; Doyle RP; Holz GG
    J Biol Chem; 2019 Mar; 294(10):3514-3531. PubMed ID: 30622136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Truncated Glucagon-like Peptide-1 and Exendin-4 α-Conotoxin pl14a Peptide Chimeras Maintain Potency and α-Helicity and Reveal Interactions Vital for cAMP Signaling in Vitro.
    Swedberg JE; Schroeder CI; Mitchell JM; Fairlie DP; Edmonds DJ; Griffith DA; Ruggeri RB; Derksen DR; Loria PM; Price DA; Liras S; Craik DJ
    J Biol Chem; 2016 Jul; 291(30):15778-87. PubMed ID: 27226591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Characterisation of Small Molecule Agonists Effect on the Human Glucagon Like Peptide-1 Receptor Internalisation.
    Thompson A; Stephens JW; Bain SC; Kanamarlapudi V
    PLoS One; 2016; 11(4):e0154229. PubMed ID: 27100083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.