These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 22148158)

  • 1. Searching for DNA lesions: structural evidence for lower- and higher-affinity DNA binding conformations of human alkyladenine DNA glycosylase.
    Setser JW; Lingaraju GM; Davis CA; Samson LD; Drennan CL
    Biochemistry; 2012 Jan; 51(1):382-90. PubMed ID: 22148158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Search for DNA damage by human alkyladenine DNA glycosylase involves early intercalation by an aromatic residue.
    Hendershot JM; O'Brien PJ
    J Biol Chem; 2017 Sep; 292(39):16070-16080. PubMed ID: 28747435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for the inhibition of human alkyladenine DNA glycosylase (AAG) by 3,N4-ethenocytosine-containing DNA.
    Lingaraju GM; Davis CA; Setser JW; Samson LD; Drennan CL
    J Biol Chem; 2011 Apr; 286(15):13205-13. PubMed ID: 21349833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkyladenine DNA glycosylase (AAG) localizes to mitochondria and interacts with mitochondrial single-stranded binding protein (mtSSB).
    van Loon B; Samson LD
    DNA Repair (Amst); 2013 Mar; 12(3):177-87. PubMed ID: 23290262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolating contributions from intersegmental transfer to DNA searching by alkyladenine DNA glycosylase.
    Hedglin M; Zhang Y; O'Brien PJ
    J Biol Chem; 2013 Aug; 288(34):24550-9. PubMed ID: 23839988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG.
    Lau AY; Wyatt MD; Glassner BJ; Samson LD; Ellenberger T
    Proc Natl Acad Sci U S A; 2000 Dec; 97(25):13573-8. PubMed ID: 11106395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonspecific DNA binding and coordination of the first two steps of base excision repair.
    Baldwin MR; O'Brien PJ
    Biochemistry; 2010 Sep; 49(36):7879-91. PubMed ID: 20701268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human alkyladenine DNA glycosylase employs a processive search for DNA damage.
    Hedglin M; O'Brien PJ
    Biochemistry; 2008 Nov; 47(44):11434-45. PubMed ID: 18839966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repair of Alkylation Damage in Eukaryotic Chromatin Depends on Searching Ability of Alkyladenine DNA Glycosylase.
    Zhang Y; O'Brien PJ
    ACS Chem Biol; 2015 Nov; 10(11):2606-15. PubMed ID: 26317160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate binding pocket residues of human alkyladenine-DNA glycosylase critical for methylating agent survival.
    Chen CY; Guo HH; Shah D; Blank A; Samson LD; Loeb LA
    DNA Repair (Amst); 2008 Oct; 7(10):1731-45. PubMed ID: 18706524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human alkyladenine DNA glycosylase uses acid-base catalysis for selective excision of damaged purines.
    O'Brien PJ; Ellenberger T
    Biochemistry; 2003 Oct; 42(42):12418-29. PubMed ID: 14567703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the Substrate Selectivity of Alkyladenine DNA Glycosylase: The Synergistic Interplay of Active Site Flexibility and Water Reorganization.
    Lenz SA; Wetmore SD
    Biochemistry; 2016 Feb; 55(5):798-808. PubMed ID: 26765542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition of 1,
    Thelen AZ; O'Brien PJ
    J Biol Chem; 2020 Feb; 295(6):1685-1693. PubMed ID: 31882538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinguishing Specific and Nonspecific Complexes of Alkyladenine DNA Glycosylase.
    Taylor EL; Kesavan PM; Wolfe AE; O'Brien PJ
    Biochemistry; 2018 Jul; 57(30):4440-4454. PubMed ID: 29940097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural studies of human alkyladenine glycosylase and E. coli 3-methyladenine glycosylase.
    Hollis T; Lau A; Ellenberger T
    Mutat Res; 2000 Aug; 460(3-4):201-10. PubMed ID: 10946229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition and processing of a new repertoire of DNA substrates by human 3-methyladenine DNA glycosylase (AAG).
    Lee CY; Delaney JC; Kartalou M; Lingaraju GM; Maor-Shoshani A; Essigmann JM; Samson LD
    Biochemistry; 2009 Mar; 48(9):1850-61. PubMed ID: 19219989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA Deformation Exerted by Regulatory DNA-Binding Motifs in Human Alkyladenine DNA Glycosylase Promotes Base Flipping.
    Wang L; Xi K; Zhu L; Da LT
    J Chem Inf Model; 2022 Jul; 62(13):3213-3226. PubMed ID: 35708296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient recognition of an unpaired lesion by a DNA repair glycosylase.
    Lyons DM; O'Brien PJ
    J Am Chem Soc; 2009 Dec; 131(49):17742-3. PubMed ID: 19924854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow base excision by human alkyladenine DNA glycosylase limits the rate of formation of AP sites and AP endonuclease 1 does not stimulate base excision.
    Maher RL; Vallur AC; Feller JA; Bloom LB
    DNA Repair (Amst); 2007 Jan; 6(1):71-81. PubMed ID: 17018265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The formation of catalytically competent enzyme-substrate complex is not a bottleneck in lesion excision by human alkyladenine DNA glycosylase.
    Kuznetsov NA; Kiryutin AS; Kuznetsova AA; Panov MS; Barsukova MO; Yurkovskaya AV; Fedorova OS
    J Biomol Struct Dyn; 2017 Apr; 35(5):950-967. PubMed ID: 27025273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.