These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Highly sensitive and selective dopamine biosensor based on 3,4,9,10-perylene tetracarboxylic acid functionalized graphene sheets/multi-wall carbon nanotubes/ionic liquid composite film modified electrode. Niu X; Yang W; Guo H; Ren J; Gao J Biosens Bioelectron; 2013 Mar; 41():225-31. PubMed ID: 22951031 [TBL] [Abstract][Full Text] [Related]
3. A novel and simple strategy for selective and sensitive determination of dopamine based on the boron-doped carbon nanotubes modified electrode. Deng C; Chen J; Wang M; Xiao C; Nie Z; Yao S Biosens Bioelectron; 2009 Mar; 24(7):2091-4. PubMed ID: 19084392 [TBL] [Abstract][Full Text] [Related]
4. Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications. Li Y; Wang P; Wang L; Lin X Biosens Bioelectron; 2007 Jun; 22(12):3120-5. PubMed ID: 17350819 [TBL] [Abstract][Full Text] [Related]
5. Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode. Wang HS; Li TH; Jia WL; Xu HY Biosens Bioelectron; 2006 Dec; 22(5):664-9. PubMed ID: 16621509 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous and sensitive determination of a quaternary mixture of AA, DA, UA and Trp using a modified GCE by iron ion-doped natrolite zeolite-multiwall carbon nanotube. Noroozifar M; Khorasani-Motlagh M; Akbari R; Bemanadi Parizi M Biosens Bioelectron; 2011 Oct; 28(1):56-63. PubMed ID: 21807496 [TBL] [Abstract][Full Text] [Related]
7. Enhancing dopamine detection using a glassy carbon electrode modified with MWCNTs, quercetin, and Nafion. Chen PY; Vittal R; Nien PC; Ho KC Biosens Bioelectron; 2009 Aug; 24(12):3504-9. PubMed ID: 19487116 [TBL] [Abstract][Full Text] [Related]
8. Acid yellow 9 as a dispersing agent for carbon nanotubes: preparation of redox polymer-carbon nanotube composite film and its sensing application towards ascorbic acid and dopamine. Kumar SA; Wang SF; Yang TC; Yeh CT Biosens Bioelectron; 2010 Aug; 25(12):2592-7. PubMed ID: 20462750 [TBL] [Abstract][Full Text] [Related]
9. Magnetic entrapment for fast, simple and reversible electrode modification with carbon nanotubes: application to dopamine detection. Baldrich E; Gómez R; Gabriel G; Muñoz FX Biosens Bioelectron; 2011 Jan; 26(5):1876-82. PubMed ID: 20378329 [TBL] [Abstract][Full Text] [Related]
10. Electrochemically selective determination of dopamine in the presence of ascorbic and uric acids on the surface of the modified Nafion/single wall carbon nanotube/poly(3-methylthiophene) glassy carbon electrodes. Quan do P; Tuyen do P; Lam TD; Tram PT; Binh NH; Viet PH Colloids Surf B Biointerfaces; 2011 Dec; 88(2):764-70. PubMed ID: 21907551 [TBL] [Abstract][Full Text] [Related]
11. Unmodified and multi-walled carbon nanotube modified tetrahedral amorphous carbon (ta-C) films as in vivo sensor materials for sensitive and selective detection of dopamine. Palomäki T; Peltola E; Sainio S; Wester N; Pitkänen O; Kordas K; Koskinen J; Laurila T Biosens Bioelectron; 2018 Oct; 118():23-30. PubMed ID: 30055416 [TBL] [Abstract][Full Text] [Related]
13. Detection of dopamine in the pharmacy with a carbon nanotube paste electrode using voltammetry. Ly SY Bioelectrochemistry; 2006 May; 68(2):227-31. PubMed ID: 16309972 [TBL] [Abstract][Full Text] [Related]
14. DNA/Poly(p-aminobenzensulfonic acid) composite bi-layer modified glassy carbon electrode for determination of dopamine and uric acid under coexistence of ascorbic acid. Lin X; Kang G; Lu L Bioelectrochemistry; 2007 May; 70(2):235-44. PubMed ID: 17079195 [TBL] [Abstract][Full Text] [Related]
15. A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Jiang LC; Zhang WD Biosens Bioelectron; 2010 Feb; 25(6):1402-7. PubMed ID: 19942424 [TBL] [Abstract][Full Text] [Related]
16. Improvement of the electrochemical detection of catechol by the use of a carbon nanotube based biosensor. Pérez López B; Merkoçi A Analyst; 2009 Jan; 134(1):60-4. PubMed ID: 19082175 [TBL] [Abstract][Full Text] [Related]
17. Hollow nitrogen-doped carbon microspheres pyrolyzed from self-polymerized dopamine and its application in simultaneous electrochemical determination of uric acid, ascorbic acid and dopamine. Xiao C; Chu X; Yang Y; Li X; Zhang X; Chen J Biosens Bioelectron; 2011 Feb; 26(6):2934-9. PubMed ID: 21177096 [TBL] [Abstract][Full Text] [Related]
18. A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode. Lim SH; Wei J; Lin J; Li Q; Kuayou J Biosens Bioelectron; 2005 May; 20(11):2341-6. PubMed ID: 15797337 [TBL] [Abstract][Full Text] [Related]
19. An 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)-immobilized electrode for the simultaneous detection of dopamine and uric acid in the presence of ascorbic acid. Chih YK; Yang MC Bioelectrochemistry; 2013 Jun; 91():44-51. PubMed ID: 23416360 [TBL] [Abstract][Full Text] [Related]
20. A carbon monoxide gas sensor using oxygen plasma modified carbon nanotubes. Zhao W; Fam DW; Yin Z; Sun T; Tan HT; Liu W; Tok AI; Boey YC; Zhang H; Hng HH; Yan Q Nanotechnology; 2012 Oct; 23(42):425502. PubMed ID: 23037508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]