BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 22148553)

  • 1. Flavin-linked Erv-family sulfhydryl oxidases release superoxide anion during catalytic turnover.
    Daithankar VN; Wang W; Trujillo JR; Thorpe C
    Biochemistry; 2012 Jan; 51(1):265-72. PubMed ID: 22148553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erv2p: characterization of the redox behavior of a yeast sulfhydryl oxidase.
    Wang W; Winther JR; Thorpe C
    Biochemistry; 2007 Mar; 46(11):3246-54. PubMed ID: 17298084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quiescin sulfhydryl oxidase from Trypanosoma brucei: catalytic activity and mechanism of a QSOX family member with a single thioredoxin domain.
    Kodali VK; Thorpe C
    Biochemistry; 2010 Mar; 49(9):2075-85. PubMed ID: 20121244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmenter of liver regeneration: a flavin-dependent sulfhydryl oxidase with cytochrome c reductase activity.
    Farrell SR; Thorpe C
    Biochemistry; 2005 Feb; 44(5):1532-41. PubMed ID: 15683237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human augmenter of liver regeneration: probing the catalytic mechanism of a flavin-dependent sulfhydryl oxidase.
    Schaefer-Ramadan S; Gannon SA; Thorpe C
    Biochemistry; 2013 Nov; 52(46):8323-32. PubMed ID: 24147449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative protein folding and the Quiescin-sulfhydryl oxidase family of flavoproteins.
    Kodali VK; Thorpe C
    Antioxid Redox Signal; 2010 Oct; 13(8):1217-30. PubMed ID: 20136510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Augmenter of liver regeneration: substrate specificity of a flavin-dependent oxidoreductase from the mitochondrial intermembrane space.
    Daithankar VN; Farrell SR; Thorpe C
    Biochemistry; 2009 Jun; 48(22):4828-37. PubMed ID: 19397338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Going through the barrier: coupled disulfide exchange reactions promote efficient catalysis in quiescin sulfhydryl oxidase.
    Israel BA; Kodali VK; Thorpe C
    J Biol Chem; 2014 Feb; 289(8):5274-84. PubMed ID: 24379406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erv2 and quiescin sulfhydryl oxidases: Erv-domain enzymes associated with the secretory pathway.
    Sevier CS
    Antioxid Redox Signal; 2012 Apr; 16(8):800-8. PubMed ID: 22142242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural determinants of substrate access to the disulfide oxidase Erv2p.
    Vala A; Sevier CS; Kaiser CA
    J Mol Biol; 2005 Dec; 354(4):952-66. PubMed ID: 16288914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inter-domain redox communication in flavoenzymes of the quiescin/sulfhydryl oxidase family: role of a thioredoxin domain in disulfide bond formation.
    Raje S; Thorpe C
    Biochemistry; 2003 Apr; 42(15):4560-8. PubMed ID: 12693953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Divergent molecular evolution of the mitochondrial sulfhydryl:cytochrome C oxidoreductase Erv in opisthokonts and parasitic protists.
    Eckers E; Petrungaro C; Gross D; Riemer J; Hell K; Deponte M
    J Biol Chem; 2013 Jan; 288(4):2676-88. PubMed ID: 23233680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human quiescin-sulfhydryl oxidase, QSOX1: probing internal redox steps by mutagenesis.
    Heckler EJ; Alon A; Fass D; Thorpe C
    Biochemistry; 2008 Apr; 47(17):4955-63. PubMed ID: 18393449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multidomain flavin-dependent sulfhydryl oxidases.
    Coppock DL; Thorpe C
    Antioxid Redox Signal; 2006; 8(3-4):300-11. PubMed ID: 16677076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Egg white sulfhydryl oxidase: kinetic mechanism of the catalysis of disulfide bond formation.
    Hoober KL; Thorpe C
    Biochemistry; 1999 Mar; 38(10):3211-7. PubMed ID: 10074377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast ERV2p is the first microsomal FAD-linked sulfhydryl oxidase of the Erv1p/Alrp protein family.
    Gerber J; Mühlenhoff U; Hofhaus G; Lill R; Lisowsky T
    J Biol Chem; 2001 Jun; 276(26):23486-91. PubMed ID: 11313344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gain of function in an ERV/ALR sulfhydryl oxidase by molecular engineering of the shuttle disulfide.
    Vitu E; Bentzur M; Lisowsky T; Kaiser CA; Fass D
    J Mol Biol; 2006 Sep; 362(1):89-101. PubMed ID: 16893552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QSOX contains a pseudo-dimer of functional and degenerate sulfhydryl oxidase domains.
    Alon A; Heckler EJ; Thorpe C; Fass D
    FEBS Lett; 2010 Apr; 584(8):1521-5. PubMed ID: 20211621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the human sulfhydryl oxidase augmenter of liver regeneration and characterization of a human mutation causing an autosomal recessive myopathy .
    Daithankar VN; Schaefer SA; Dong M; Bahnson BJ; Thorpe C
    Biochemistry; 2010 Aug; 49(31):6737-45. PubMed ID: 20593814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homology between egg white sulfhydryl oxidase and quiescin Q6 defines a new class of flavin-linked sulfhydryl oxidases.
    Hoober KL; Glynn NM; Burnside J; Coppock DL; Thorpe C
    J Biol Chem; 1999 Nov; 274(45):31759-62. PubMed ID: 10542195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.