These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 22148583)
1. DFT energy optimization of a large carbohydrate: cyclomaltohexaicosaose (CA-26). Schnupf U; Momany FA J Phys Chem B; 2012 Jun; 116(23):6618-27. PubMed ID: 22148583 [TBL] [Abstract][Full Text] [Related]
2. Density-functional geometry optimization of the 150,000-atom photosystem-I trimer. Canfield P; Dahlbom MG; Hush NS; Reimers JR J Chem Phys; 2006 Jan; 124(2):024301. PubMed ID: 16422577 [TBL] [Abstract][Full Text] [Related]
3. Electronic structure, binding energy, and solvation structure of the streptavidin-biotin supramolecular complex: ONIOM and 3D-RISM study. Li Q; Gusarov S; Evoy S; Kovalenko A J Phys Chem B; 2009 Jul; 113(29):9958-67. PubMed ID: 19545155 [TBL] [Abstract][Full Text] [Related]
4. Which DFT functional performs well in the calculation of methylcobalamin? Comparison of the B3LYP and BP86 functionals and evaluation of the impact of empirical dispersion correction. Hirao H J Phys Chem A; 2011 Aug; 115(33):9308-13. PubMed ID: 21806069 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure prediction and isostructurality of three small organic halogen compounds. Asmadi A; Kendrick J; Leusen FJ Phys Chem Chem Phys; 2010 Aug; 12(30):8571-9. PubMed ID: 20532368 [TBL] [Abstract][Full Text] [Related]
6. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations. Maupin CM; Aradi B; Voth GA J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461 [TBL] [Abstract][Full Text] [Related]
7. Quantum mechanics/molecular mechanics methods can be more accurate than full quantum mechanics in systems involving dispersion correlations. Sameera WM; Maseras F Phys Chem Chem Phys; 2011 Jun; 13(22):10520-6. PubMed ID: 21512705 [TBL] [Abstract][Full Text] [Related]
8. Semiempirical PM5 molecular orbital study on chlorophylls and bacteriochlorophylls: comparison of semiempirical, ab initio, and density functional results. Linnanto J; Korppi-Tommola J J Comput Chem; 2004 Jan; 25(1):123-38. PubMed ID: 14635000 [TBL] [Abstract][Full Text] [Related]
9. The treatment of solvation by a generalized Born model and a self-consistent charge-density functional theory-based tight-binding method. Xie L; Liu H J Comput Chem; 2002 Nov; 23(15):1404-15. PubMed ID: 12370943 [TBL] [Abstract][Full Text] [Related]
10. Application of the computationally efficient self-consistent-charge density-functional tight-binding method to magnesium-containing molecules. Cai ZL; Lopez P; Reimers JR; Cui Q; Elstner M J Phys Chem A; 2007 Jul; 111(26):5743-50. PubMed ID: 17555305 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure, spectroscopic investigations and density functional studies of 4-(4-methoxyphenethyl)-5-benzyl-2H-1,2,4-triazol-3(4H)-one monohydrate. Köysal Y; Tanak H Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():106-15. PubMed ID: 22465776 [TBL] [Abstract][Full Text] [Related]
12. Systematic study of vibrational frequencies calculated with the self-consistent charge density functional tight-binding method. Witek HA; Morokuma K J Comput Chem; 2004 Nov; 25(15):1858-64. PubMed ID: 15376252 [TBL] [Abstract][Full Text] [Related]
13. Analytical second-order geometrical derivatives of energy for the self-consistent-charge density-functional tight-binding method. Witek HA; Irle S; Morokuma K J Chem Phys; 2004 Sep; 121(11):5163-70. PubMed ID: 15352808 [TBL] [Abstract][Full Text] [Related]
14. An ab initio theoretical study of electronic structure and properties of 2'-deoxyguanosine in gas phase and aqueous media. Mishra SK; Mishra PC J Comput Chem; 2002 Apr; 23(5):530-40. PubMed ID: 11948579 [TBL] [Abstract][Full Text] [Related]
15. Inclusion complexes of V-amylose with undecanoic acid and dodecanol at atomic resolution: X-ray structures with cycloamylose containing 26 D-glucoses (cyclohexaicosaose) as host. Nimz O; Gessler K; Usón I; Sheldrick GM; Saenger W Carbohydr Res; 2004 Jun; 339(8):1427-37. PubMed ID: 15178384 [TBL] [Abstract][Full Text] [Related]
16. Comparative theoretical investigation of the vertical excitation energies and the electronic structure of [MoVOCl4]-: influence of basis set and geometry. Nemykin VN; Basu P Inorg Chem; 2003 Jun; 42(13):4046-56. PubMed ID: 12817960 [TBL] [Abstract][Full Text] [Related]
17. Protein-ligand interaction energies with dispersion corrected density functional theory and high-level wave function based methods. Antony J; Grimme S; Liakos DG; Neese F J Phys Chem A; 2011 Oct; 115(41):11210-20. PubMed ID: 21842894 [TBL] [Abstract][Full Text] [Related]
18. Interaction energies between glycopeptide antibiotics and substrates in complexes determined by X-ray crystallography: application of a theoretical databank of aspherical atoms and a symmetry-adapted perturbation theory-based set of interatomic potentials. Li X; Volkov AV; Szalewicz K; Coppens P Acta Crystallogr D Biol Crystallogr; 2006 Jun; 62(Pt 6):639-47. PubMed ID: 16699191 [TBL] [Abstract][Full Text] [Related]
19. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Marenich AV; Cramer CJ; Truhlar DG J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259 [TBL] [Abstract][Full Text] [Related]
20. Ionic hydrogen-bond networks and ion solvation. 1. An efficient Monte Carlo/quantum mechanical method for structural search and energy computations: ammonium/water. Zhao YL; Meot-Ner Mautner M; Gonzalez C J Phys Chem A; 2009 Mar; 113(12):2967-74. PubMed ID: 19243164 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]