These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 22149119)

  • 1. Influence of differing material properties in media and adventitia on arterial adaptation--application to aneurysm formation and rupture.
    Schmid H; Grytsan A; Poshtan E; Watton PN; Itskov M
    Comput Methods Biomech Biomed Engin; 2013; 16(1):33-53. PubMed ID: 22149119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of transmural heterogeneities on arterial adaptation: application to aneurysm formation.
    Schmid H; Watton PN; Maurer MM; Wimmer J; Winkler P; Wang YK; Röhrle O; Itskov M
    Biomech Model Mechanobiol; 2010 Jun; 9(3):295-315. PubMed ID: 19943177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of medial collagen organization and axial in situ stretch on saccular cerebral aneurysm growth.
    Eriksson T; Kroon M; Holzapfel GA
    J Biomech Eng; 2009 Oct; 131(10):101010. PubMed ID: 19831480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of pressure on arterial failure.
    Khamdaengyodtai P; Vafai K; Sakulchangsatjatai P; Terdtoon P
    J Biomech; 2012 Oct; 45(15):2577-88. PubMed ID: 22980577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of saccular aneurysm growth in a human middle cerebral artery.
    Kroon M; Holzapfel GA
    J Biomech Eng; 2008 Oct; 130(5):051012. PubMed ID: 19045519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cavitation instability as a trigger of aneurysm rupture.
    Volokh KY
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1071-9. PubMed ID: 25637515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porohyperelastic finite element modeling of abdominal aortic aneurysms.
    Ayyalasomayajula A; Vande Geest JP; Simon BR
    J Biomech Eng; 2010 Oct; 132(10):104502. PubMed ID: 20887020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads.
    Gasser TC; Görgülü G; Folkesson M; Swedenborg J
    J Vasc Surg; 2008 Jul; 48(1):179-88. PubMed ID: 18486417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereoscopically observed deformations of a compliant abdominal aortic aneurysm model.
    Meyer CA; Bertrand E; Boiron O; Deplano V
    J Biomech Eng; 2011 Nov; 133(11):111004. PubMed ID: 22168736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress distributions in vascular aneurysms: factors affecting risk of aneurysm rupture.
    Mower WR; Baraff LJ; Sneyd J
    J Surg Res; 1993 Aug; 55(2):155-61. PubMed ID: 8412094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of saccular aneurysm hemodynamics: influence of morphology on rupture risk.
    Utter B; Rossmann JS
    J Biomech; 2007; 40(12):2716-22. PubMed ID: 17350027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model.
    Rissland P; Alemu Y; Einav S; Ricotta J; Bluestein D
    J Biomech Eng; 2009 Mar; 131(3):031001. PubMed ID: 19154060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational model for understanding the micro-mechanics of collagen fiber network in the tunica adventitia.
    Ayyalasomayajula V; Pierrat B; Badel P
    Biomech Model Mechanobiol; 2019 Oct; 18(5):1507-1528. PubMed ID: 31065952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction.
    Maier A; Gee MW; Reeps C; Pongratz J; Eckstein HH; Wall WA
    Ann Biomed Eng; 2010 Oct; 38(10):3124-34. PubMed ID: 20480238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical wall properties of human intracranial aneurysms resected following surgical clipping (IRRAs Project).
    Costalat V; Sanchez M; Ambard D; Thines L; Lonjon N; Nicoud F; Brunel H; Lejeune JP; Dufour H; Bouillot P; Lhaldky JP; Kouri K; Segnarbieux F; Maurage CA; Lobotesis K; Villa-Uriol MC; Zhang C; Frangi AF; Mercier G; Bonafé A; Sarry L; Jourdan F
    J Biomech; 2011 Oct; 44(15):2685-91. PubMed ID: 21924427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular wall flow-induced forces in a progressively enlarged aneurysm model.
    Neofytou P; Tsangaris S; Kyriakidis M
    Comput Methods Biomech Biomed Engin; 2008 Dec; 11(6):615-26. PubMed ID: 18979302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abdominal aortic aneurysm and cerebral aneurysm present different pathological evolutions and responses to pharmacological therapy.
    Zhou X; Ji WJ; Tu Y; Yao M; Li YM
    Med Hypotheses; 2007; 68(3):601-6. PubMed ID: 17030100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of wall calcifications in patient-specific wall stress analyses of abdominal aortic aneurysms.
    Speelman L; Bohra A; Bosboom EM; Schurink GW; van de Vosse FN; Makaorun MS; Vorp DA
    J Biomech Eng; 2007 Feb; 129(1):105-9. PubMed ID: 17227104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model for arterial adaptation combining microstructural collagen remodeling and 3D tissue growth.
    Machyshyn IM; Bovendeerd PH; van de Ven AA; Rongen PM; van de Vosse FN
    Biomech Model Mechanobiol; 2010 Dec; 9(6):671-87. PubMed ID: 20300950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear anisotropic stress analysis of anatomically realistic cerebral aneurysms.
    Ma B; Lu J; Harbaugh RE; Raghavan ML
    J Biomech Eng; 2007 Feb; 129(1):88-96. PubMed ID: 17227102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.