BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 22149289)

  • 1. Development of high-quality hexahedral human brain meshes using feature-based multi-block approach.
    Mao H; Gao H; Cao L; Genthikatti VV; Yang KH
    Comput Methods Biomech Biomed Engin; 2013; 16(3):271-9. PubMed ID: 22149289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A voxel-based finite element model for the prediction of bladder deformation.
    Chai X; van Herk M; Hulshof MC; Bel A
    Med Phys; 2012 Jan; 39(1):55-65. PubMed ID: 22225275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods for high-resolution anisotropic finite element modeling of the human head: automatic MR white matter anisotropy-adaptive mesh generation.
    Lee WH; Kim TS
    Med Eng Phys; 2012 Jan; 34(1):85-98. PubMed ID: 21820347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometry-adapted hexahedral meshes improve accuracy of finite-element-method-based EEG source analysis.
    Wolters CH; Anwander A; Berti G; Hartmann U
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1446-53. PubMed ID: 17694865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-hexahedral structured meshing for image-based computational vascular modeling.
    De Santis G; De Beule M; Van Canneyt K; Segers P; Verdonck P; Verhegghe B
    Med Eng Phys; 2011 Dec; 33(10):1318-25. PubMed ID: 21763174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Template-based finite-element mesh generation from medical images.
    Baghdadi L; Steinman DA; Ladak HM
    Comput Methods Programs Biomed; 2005 Jan; 77(1):11-21. PubMed ID: 15639706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for rapid production of subject specific finite element meshes for electrical impedance tomography of the human head.
    Vonach M; Marson B; Yun M; Cardoso J; Modat M; Ourselin S; Holder D
    Physiol Meas; 2012 May; 33(5):801-16. PubMed ID: 22531116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated hexahedral meshing of anatomic structures using deformable registration.
    Grosland NM; Bafna R; Magnotta VA
    Comput Methods Biomech Biomed Engin; 2009 Feb; 12(1):35-43. PubMed ID: 18688764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach.
    Baldwin MA; Langenderfer JE; Rullkoetter PJ; Laz PJ
    Comput Methods Programs Biomed; 2010 Mar; 97(3):232-40. PubMed ID: 19695732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A set of mixed-elements patterns for domain boundary approximation in hexahedral meshes.
    Lobos C
    Stud Health Technol Inform; 2013; 184():268-72. PubMed ID: 23400168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subject specific finite element mesh generation of the pelvis from biplanar x-ray images: application to 120 clinical cases.
    Fougeron N; Rohan PY; Macron A; Travert C; Pillet H; Skalli W
    Comput Methods Biomech Biomed Engin; 2018 Apr; 21(5):408-412. PubMed ID: 29969279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ia-FEMesh: anatomic FE models--a check of mesh accuracy and validity.
    Devries NA; Shivanna KH; Tadepalli SC; Magnotta VA; Grosland NM
    Iowa Orthop J; 2009; 29():48-54. PubMed ID: 19742085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the Polyhedral Mesh Style for Predicting Aerosol Deposition in Representative Models of the Conducting Airways.
    Thomas ML; Longest PW
    J Aerosol Sci; 2022 Jan; 159():. PubMed ID: 34658403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphing the feature-based multi-blocks of normative/healthy vertebral geometries to scoliosis vertebral geometries: development of personalized finite element models.
    Hadagali P; Peters JR; Balasubramanian S
    Comput Methods Biomech Biomed Engin; 2018 Mar; 21(4):297-324. PubMed ID: 29528253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data.
    Longest PW; Vinchurkar S
    Med Eng Phys; 2007 Apr; 29(3):350-66. PubMed ID: 16814588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur.
    Ramos A; Simões JA
    Med Eng Phys; 2006 Nov; 28(9):916-24. PubMed ID: 16464628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hexahedral meshing of subject-specific anatomic structures using mapped building blocks.
    Kallemeyn NA; Natarajan A; Magnotta VA; Grosland NM
    Comput Methods Biomech Biomed Engin; 2013; 16(6):602-11. PubMed ID: 22185480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patient-specific modelling of the foot: automated hexahedral meshing of the bones.
    Lievers WB; Kent RW
    Comput Methods Biomech Biomed Engin; 2013; 16(12):1287-97. PubMed ID: 22436002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gaussian curvature analysis allows for automatic block placement in multi-block hexahedral meshing.
    Ramme AJ; Shivanna KH; Magnotta VA; Grosland NM
    Comput Methods Biomech Biomed Engin; 2011 Oct; 14(10):893-904. PubMed ID: 20924860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growing multiblock structures: a semi-automated approach to block placement for multiblock hexahedral meshing.
    Ramme AJ; Shivanna KH; Criswell AJ; Kallemeyn NA; Magnotta VA; Grosland NM
    Comput Methods Biomech Biomed Engin; 2012; 15(10):1043-52. PubMed ID: 21547780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.