These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22149346)

  • 1. Playing with dimensions: rational design for heteroepitaxial p-n junctions.
    Lee TI; Lee SH; Kim YD; Jang WS; Oh JY; Baik HK; Stampfl C; Soon A; Myoung JM
    Nano Lett; 2012 Jan; 12(1):68-76. PubMed ID: 22149346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and evaluation of high-quality n-ZnO nanorod/p-diamond heterojunctions.
    Wang CD; Jha SK; Chen ZH; Ng TW; Liu YK; Yuen MF; Lu ZZ; Kwok SY; Zapien JA; Bello I; Lee CS; Zhang WJ
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4560-3. PubMed ID: 22905500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible inorganic nanowire light-emitting diode.
    Nadarajah A; Word RC; Meiss J; Könenkamp R
    Nano Lett; 2008 Feb; 8(2):534-7. PubMed ID: 18220439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature dependant structural and electrical properties of ZnO nanowire networks.
    Al-Heniti S; Badran RI; Umar A; Al-Ghamdi A; Kim SH; Al-Marzouki F; Al-Hajry A; Al-Sayari SA; Al-Harbi T
    J Nanosci Nanotechnol; 2012 Jan; 12(1):68-74. PubMed ID: 22523947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of ZnO nanoplate-nanorod junctions.
    Zhan J; Bando Y; Hu J; Golberg D; Kurashima K
    Small; 2006 Jan; 2(1):62-5. PubMed ID: 17193555
    [No Abstract]   [Full Text] [Related]  

  • 6. The growth and characterization of ZnO/ZnTe core-shell nanowires and the electrical properties of ZnO/ZnTe core-shell nanowire field effect transistor.
    Chao HY; You SH; Lu JY; Cheng JH; Chang YH; Liang CT; Wu CT
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2042-6. PubMed ID: 21449346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diode junctions between two ZnO nanoparticles: current rectification and the role of particle size (and bandgap).
    Mohanta K; Pal AJ
    Nanotechnology; 2009 May; 20(18):185203. PubMed ID: 19420607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing.
    Chang YK; Hong FC
    Nanotechnology; 2009 May; 20(19):195302. PubMed ID: 19420638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for surface states in pristine and Co-doped ZnO nanostructures: magnetization and nonlinear optical studies.
    Podila R; Anand B; West JP; Philip R; Sai SS; He J; Skove M; Hwu SJ; Tewari S; Rao AM
    Nanotechnology; 2011 Mar; 22(9):095703. PubMed ID: 21258145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rectifying properties of p-GaN nanowires and an n-silicon heterojunction vertical diode.
    Manna S; Ashok VD; De SK
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3539-43. PubMed ID: 21121615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle-coated n-ZnO/p-Si photodiodes with improved photoresponsivities and acceptance angles for potential solar cell applications.
    Chen CP; Lin PH; Chen LY; Ke MY; Cheng YW; Huang J
    Nanotechnology; 2009 Jun; 20(24):245204. PubMed ID: 19468172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of zinc oxide nanorods, tetrapods, and nanobelts without catalyst.
    Fouad OA
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2090-4. PubMed ID: 17025131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmission electron microscopy investigation of Sb-doped ZnO nanoribbons and Zn7Sb2O12 branched ZnO nanoribbon structure.
    Zou K; Zhou S; Zhang X; Qi X; Duan X
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2200-3. PubMed ID: 17025150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A room temperature synthetic route to Mn3O4 nanoplates.
    Song R; Yuan H; Chen Y; Feng S
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2533-6. PubMed ID: 21449419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Room-temperature, texture-controlled growth of ZnO thin films and their application for growing aligned ZnO nanowire arrays.
    Hong JI; Bae J; Wang ZL; Snyder RL
    Nanotechnology; 2009 Feb; 20(8):085609. PubMed ID: 19417457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of zinc oxide nanotetrapods and nanorods by thermal evaporation without catalysis.
    Singh J; Tiwari RS; Srivastava ON
    J Nanosci Nanotechnol; 2007 Jun; 7(6):1783-6. PubMed ID: 17654939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-dimensional ZnO nanostructures.
    Jayadevan KP; Tseng TY
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4409-57. PubMed ID: 22905484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable synthesis of vertically aligned ZnO nanorod arrays in aqueous solution.
    Ma S; Fang G; Li C; Sheng S; Fang L; Fu Q; Zhao XZ
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2062-6. PubMed ID: 17025125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical and structural properties of antimony-doped p-type ZnO nanorods with self-corrugated surfaces.
    Kang JW; Choi YS; Choe M; Kim NY; Lee T; Kim BJ; Tu CW; Park SJ
    Nanotechnology; 2012 Dec; 23(49):495712. PubMed ID: 23154405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical bistabilities and operating mechanisms of memory devices fabricated utilizing ZnO quantum dot-multi-walled carbon nanotube nanocomposites.
    Li F; Son DI; Cho SH; Kim TW
    Nanotechnology; 2009 May; 20(18):185202. PubMed ID: 19420606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.