These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 22149376)
21. Characterising the central mechanisms of sensory modulation in human swallowing motor cortex. Gow D; Hobson AR; Furlong P; Hamdy S Clin Neurophysiol; 2004 Oct; 115(10):2382-90. PubMed ID: 15351381 [TBL] [Abstract][Full Text] [Related]
22. Comparison between the C5 or C6-Cz electrode assembly and C3 or C4-Cz assembly for transcranial electric motor activation of muscular response of the contralateral facial nerve. Verst SM; Chung TM; Sucena AC; Maldaun MV; Aguiar PH Acta Neurochir (Wien); 2012 Dec; 154(12):2229-35. PubMed ID: 23053280 [TBL] [Abstract][Full Text] [Related]
24. Transcranial electrical stimulation and monitoring. Response. Ito E; Itakura T; Saito K J Neurosurg; 2014 Jan; 120(1):292-3. PubMed ID: 24520576 [No Abstract] [Full Text] [Related]
25. Experimental study of the course of threshold current, voltage and electrode impedance during stepwise stimulation from the skin surface to the human cortex. Szelényi A; Journée HL; Herrlich S; Galistu GM; van den Berg J; van Dijk JM Brain Stimul; 2013 Jul; 6(4):482-9. PubMed ID: 23137703 [TBL] [Abstract][Full Text] [Related]
26. Intra-Operative electromyographic monitoring of extra-ocular motor nerves (Nn. III, VI) in skull base surgery. Schlake HP; Goldbrunner R; Siebert M; Behr R; Roosen K Acta Neurochir (Wien); 2001; 143(3):251-61. PubMed ID: 11460913 [TBL] [Abstract][Full Text] [Related]
27. Methodology for intra-operative recording of the corticobulbar motor evoked potentials from cricothyroid muscles. Deletis V; Fernández-Conejero I; Ulkatan S; Rogić M; Carbó EL; Hiltzik D Clin Neurophysiol; 2011 Sep; 122(9):1883-9. PubMed ID: 21440494 [TBL] [Abstract][Full Text] [Related]
28. The cutoff amplitude of transcranial motor-evoked potentials for predicting postoperative motor deficits in thoracic spine surgery. Muramoto A; Imagama S; Ito Z; Wakao N; Ando K; Tauchi R; Hirano K; Matsui H; Matsumoto T; Matsuyama Y; Ishigro N Spine (Phila Pa 1976); 2013 Jan; 38(1):E21-7. PubMed ID: 23104192 [TBL] [Abstract][Full Text] [Related]
29. Predictive value of intraoperative vagus nerve corticobulbar motor evoked potentials to assess the risk of dysphagia in fourth ventricle surgery. Della Pepa GM; Fraschetti F; Domenico MD; Valz Gris A; Izzo A; Menna G; D'Alessandris QG; D'Ercole M; Stifano V; Ausili Cefaro C; Lauretti L; Tamburrini G; Olivi A; Montano N J Neurosurg; 2024 Jun; 140(6):1540-1548. PubMed ID: 38039532 [TBL] [Abstract][Full Text] [Related]
30. Monitoring of intraoperative motor evoked potentials to increase the safety of surgery in and around the motor cortex. Kombos T; Suess O; Ciklatekerlio O; Brock M J Neurosurg; 2001 Oct; 95(4):608-14. PubMed ID: 11596955 [TBL] [Abstract][Full Text] [Related]
31. Facial motor evoked potentials in cerebellopontine angle surgery: technique, pitfalls and predictive value. Matthies C; Raslan F; Schweitzer T; Hagen R; Roosen K; Reiners K Clin Neurol Neurosurg; 2011 Dec; 113(10):872-9. PubMed ID: 21798660 [TBL] [Abstract][Full Text] [Related]
32. Transcranial electrical stimulation through screw electrodes for intraoperative monitoring of motor evoked potentials. Technical note. Watanabe K; Watanabe T; Takahashi A; Saito N; Hirato M; Sasaki T J Neurosurg; 2004 Jan; 100(1):155-60. PubMed ID: 14743930 [TBL] [Abstract][Full Text] [Related]
33. Novel method of intraoperative ocular movement monitoring using a piezoelectric device: experimental study of ocular motor nerve activating piezoelectric potentials (OMNAPP) and clinical application for skull base surgeries. Sakata K; Suematsu K; Takeshige N; Nagata Y; Orito K; Miyagi N; Sakai N; Koseki T; Morioka M Neurosurg Rev; 2020 Feb; 43(1):185-193. PubMed ID: 30209640 [TBL] [Abstract][Full Text] [Related]
34. Reversal of a virtual lesion in human pharyngeal motor cortex by high frequency contralesional brain stimulation. Jefferson S; Mistry S; Michou E; Singh S; Rothwell JC; Hamdy S Gastroenterology; 2009 Sep; 137(3):841-9, 849.e1. PubMed ID: 19427312 [TBL] [Abstract][Full Text] [Related]
35. Alarm criteria for motor-evoked potentials: what's wrong with the "presence-or-absence" approach? Calancie B; Molano MR Spine (Phila Pa 1976); 2008 Feb; 33(4):406-14. PubMed ID: 18277873 [TBL] [Abstract][Full Text] [Related]
36. Non-invasive magnetic stimulation of the human cerebellum facilitates cortico-bulbar projections in the swallowing motor system. Jayasekeran V; Rothwell J; Hamdy S Neurogastroenterol Motil; 2011 Sep; 23(9):831-e341. PubMed ID: 21838728 [TBL] [Abstract][Full Text] [Related]
37. The effects of the neuromuscular blockade levels on amplitudes of posttetanic motor-evoked potentials and movement in response to transcranial stimulation in patients receiving propofol and fentanyl anesthesia. Yamamoto Y; Kawaguchi M; Hayashi H; Horiuchi T; Inoue S; Nakase H; Sakaki T; Furuya H Anesth Analg; 2008 Mar; 106(3):930-4, table of contents. PubMed ID: 18292442 [TBL] [Abstract][Full Text] [Related]
38. [Transcranial motor evoked potentials monitoring for cerebral aneurysm surgery]. Yamashita S; Sasaki O; Suzuki K; Takao T; Nakamura K; Koike T No Shinkei Geka; 2013 Jan; 41(1):15-24. PubMed ID: 23269251 [TBL] [Abstract][Full Text] [Related]
39. Test-retest reliability of motor evoked potentials (MEPs) at the submental muscle group during volitional swallowing. Doeltgen SH; Ridding MC; O'Beirne GA; Dalrymple-Alford J; Huckabee ML J Neurosci Methods; 2009 Mar; 178(1):134-7. PubMed ID: 19118575 [TBL] [Abstract][Full Text] [Related]
40. The refractory period of fast conducting corticospinal tract axons in man and its implications for intraoperative monitoring of motor evoked potentials. Novak K; de Camargo AB; Neuwirth M; Kothbauer K; Amassian VE; Deletis V Clin Neurophysiol; 2004 Aug; 115(8):1931-41. PubMed ID: 15261873 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]