These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 22149414)

  • 1. A femoral model with all relevant muscles and hip capsule ligaments.
    Helwig P; Hindenlang U; Hirschmüller A; Konstantinidis L; Südkamp N; Schneider R
    Comput Methods Biomech Biomed Engin; 2013; 16(6):669-77. PubMed ID: 22149414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of boundary condition on the biomechanics of a human pelvic joint under an axial compressive load: a three-dimensional finite element model.
    Hao Z; Wan C; Gao X; Ji T
    J Biomech Eng; 2011 Oct; 133(10):101006. PubMed ID: 22070331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The finite element modeling of human pelvis and its application in medicolegal expertise].
    Li ZD; Zou DH; Liu NG; Huang P; Chen YJ
    Fa Yi Xue Za Zhi; 2010 Dec; 26(6):406-12. PubMed ID: 21425599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is the Pauwels' theory of hip biomechanics still valid? A critical analysis, based on modern methods.
    Kummer B
    Ann Anat; 1993 Jun; 175(3):203-10. PubMed ID: 8338217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of hip anatomical variations on the cartilage stress: a finite element analysis towards the biomechanical exploration of the factors that may explain primary hip arthritis in morphologically normal subjects.
    Sánchez Egea AJ; Valera M; Parraga Quiroga JM; Proubasta I; Noailly J; Lacroix D
    Clin Biomech (Bristol, Avon); 2014 Apr; 29(4):444-50. PubMed ID: 24530154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biomechanics of plate repair of periprosthetic femur fractures near the tip of a total hip implant: the effect of cable-screw position.
    Dubov A; Kim SY; Shah S; Schemitsch EH; Zdero R; Bougherara H
    Proc Inst Mech Eng H; 2011 Sep; 225(9):857-65. PubMed ID: 22070023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biomechanical evaluation of the gliding nail in trochanteric fractures].
    Helwig P; Faust G; Hindenlang U; Suckel A; Kröplin B; Südkamp N
    Z Orthop Ihre Grenzgeb; 2006; 144(6):594-601. PubMed ID: 17187334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-dimensional finite element analysis of the human hip.
    Akrami M; Craig K; Dibaj M; Javadi AA; Benattayallah A
    J Med Eng Technol; 2018 Oct; 42(7):546-552. PubMed ID: 30875263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hip joint: structure, stability, and stress; a review.
    Singleton MC; LeVeau BF
    Phys Ther; 1975 Sep; 55(9):957-73. PubMed ID: 1161812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anatomical and biomechanical investigations of the iliotibial tract.
    Birnbaum K; Siebert CH; Pandorf T; Schopphoff E; Prescher A; Niethard FU
    Surg Radiol Anat; 2004 Dec; 26(6):433-46. PubMed ID: 15378277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element analysis of a bone-implant system with the proximal femur nail.
    Helwig P; Faust G; Hindenlang U; Kröplin B; Eingartner C
    Technol Health Care; 2006; 14(4-5):411-9. PubMed ID: 17065762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Function-orientated structural analysis of the proximal human femur.
    Skuban TP; Vogel T; Baur-Melnyk A; Jansson V; Heimkes B
    Cells Tissues Organs; 2009; 190(5):247-55. PubMed ID: 19321950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of femoral strain pattern analyses to resultant and muscle forces at the hip joint.
    Lengsfeld M; Kaminsky J; Merz B; Franke RP
    Med Eng Phys; 1996 Jan; 18(1):70-8. PubMed ID: 8771042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of loading parameters in the canine hip in vivo.
    Page AE; Allan C; Jasty M; Harrigan TP; Bragdon CR; Harris WH
    J Biomech; 1993; 26(4-5):571-9. PubMed ID: 8478358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of strength and strain of the proximal femur by a CT-based finite element method.
    Bessho M; Ohnishi I; Matsuyama J; Matsumoto T; Imai K; Nakamura K
    J Biomech; 2007; 40(8):1745-53. PubMed ID: 17034798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An experimental method for the application of lateral muscle loading and its effect on femoral strain distributions.
    Szivek JA; Benjamin JB; Anderson PL
    Med Eng Phys; 2000 Mar; 22(2):109-16. PubMed ID: 10854964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element analysis of the femur during stance phase of gait based on musculoskeletal model simulation.
    Seo JW; Kang DW; Kim JY; Yang ST; Kim DH; Choi JS; Tack GR
    Biomed Mater Eng; 2014; 24(6):2485-93. PubMed ID: 25226949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-scale modelling framework combining musculoskeletal rigid-body simulations with adaptive finite element analyses, to evaluate the impact of femoral geometry on hip joint contact forces and femoral bone growth.
    Kainz H; Killen BA; Wesseling M; Perez-Boerema F; Pitto L; Garcia Aznar JM; Shefelbine S; Jonkers I
    PLoS One; 2020; 15(7):e0235966. PubMed ID: 32702015
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Ramezani M; Klima S; de la Herverie PLC; Campo J; Le Joncour JB; Rouquette C; Scholze M; Hammer N
    Biomed Res Int; 2019; 2019():3973170. PubMed ID: 30729122
    [No Abstract]   [Full Text] [Related]  

  • 20. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with simplified representation of whole body.
    Majumder S; Roychowdhury A; Pal S
    Med Eng Phys; 2007 Dec; 29(10):1167-78. PubMed ID: 17270483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.