BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 22149628)

  • 1. Comparison of konjac glucomannan digestibility and fermentability with other dietary fibers in vitro.
    Chiu YT; Stewart M
    J Med Food; 2012 Feb; 15(2):120-5. PubMed ID: 22149628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative effects of cellulose and soluble fibers (pectin, konjac glucomannan, inulin) on fecal water toxicity toward Caco-2 cells, fecal bacteria enzymes, bile acid, and short-chain fatty acids.
    Chen HL; Lin YM; Wang YC
    J Agric Food Chem; 2010 Sep; 58(18):10277-81. PubMed ID: 20799709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro analysis of partially hydrolyzed guar gum fermentation differences between six individuals.
    Carlson J; Esparza J; Swan J; Taussig D; Combs J; Slavin J
    Food Funct; 2016 Apr; 7(4):1833-8. PubMed ID: 26862979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of dietary fibers with different physicochemical properties on fermentation kinetics and microbial composition by fecal inoculum from lactating sows in vitro.
    Pi Y; Hu J; Bai Y; Wang Z; Wu Y; Ye H; Zhang S; Tao S; Xiao Y; Han D; Ni D; Zou X; Wang J
    J Sci Food Agric; 2021 Feb; 101(3):907-917. PubMed ID: 32737882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermentation profiles of wheat dextrin, inulin and partially hydrolyzed guar gum using an in vitro digestion pretreatment and in vitro batch fermentation system model.
    Noack J; Timm D; Hospattankar A; Slavin J
    Nutrients; 2013 May; 5(5):1500-10. PubMed ID: 23645025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular weight of guar gum affects short-chain fatty acid profile in model intestinal fermentation.
    Stewart ML; Slavin JL
    Mol Nutr Food Res; 2006 Oct; 50(10):971-6. PubMed ID: 16967518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of long-term dietary pattern of fecal donor on in vitro fecal fermentation properties of inulin.
    Yang J; Rose DJ
    Food Funct; 2016 Apr; 7(4):1805-13. PubMed ID: 26583778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermentability of various fiber sources by human fecal bacteria in vitro.
    Titgemeyer EC; Bourquin LD; Fahey GC; Garleb KA
    Am J Clin Nutr; 1991 Jun; 53(6):1418-24. PubMed ID: 1852091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using "slowly fermentable" dietary fibers.
    Kaur A; Rose DJ; Rumpagaporn P; Patterson JA; Hamaker BR
    J Food Sci; 2011; 76(5):H137-42. PubMed ID: 22417432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Konjac glucomannan and inulin systematically modulate antioxidant defense in rats fed a high-fat fiber-free diet.
    Wu WT; Chen HL
    J Agric Food Chem; 2011 Sep; 59(17):9194-200. PubMed ID: 21800874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unhydrolyzed and hydrolyzed konjac glucomannans modulated cecal and fecal microflora in Balb/c mice.
    Chen HL; Fan YH; Chen ME; Chan Y
    Nutrition; 2005 Oct; 21(10):1059-64. PubMed ID: 16157244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wheat dextrin, psyllium, and inulin produce distinct fermentation patterns, gas volumes, and short-chain fatty acid profiles in vitro.
    Timm DA; Stewart ML; Hospattankar A; Slavin JL
    J Med Food; 2010 Aug; 13(4):961-6. PubMed ID: 20482283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of dietary inulin on bacterial growth, short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice.
    Weitkunat K; Schumann S; Petzke KJ; Blaut M; Loh G; Klaus S
    J Nutr Biochem; 2015 Sep; 26(9):929-37. PubMed ID: 26033744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fructooligosaccharides exhibit more rapid fermentation than long-chain inulin in an in vitro fermentation system.
    Stewart ML; Timm DA; Slavin JL
    Nutr Res; 2008 May; 28(5):329-34. PubMed ID: 19083428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of in Vivo Colonic Short Chain Fatty Acid Production from Inulin.
    Boets E; Deroover L; Houben E; Vermeulen K; Gomand SV; Delcour JA; Verbeke K
    Nutrients; 2015 Oct; 7(11):8916-29. PubMed ID: 26516911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular weight distribution and fermentation of mechanically pre-treated konjac enzymatic hydrolysates.
    Yang J; Vittori N; Wang W; Shi YC; Hoeflinger JL; Miller MJ; Pan Y
    Carbohydr Polym; 2017 Mar; 159():58-65. PubMed ID: 28038754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of different fibers for in vitro production of short chain fatty acids by intestinal microflora.
    Pylkas AM; Juneja LR; Slavin JL
    J Med Food; 2005; 8(1):113-6. PubMed ID: 15857221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supplementation of konjac glucomannan into a low-fiber Chinese diet promoted bowel movement and improved colonic ecology in constipated adults: a placebo-controlled, diet-controlled trial.
    Chen HL; Cheng HC; Wu WT; Liu YJ; Liu SY
    J Am Coll Nutr; 2008 Feb; 27(1):102-8. PubMed ID: 18460488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation and interpretation of fermentation in the gut: coupling results from a 24 h batch in vitro system with fecal measurements from a human intervention feeding study using fructo-oligosaccharides, inulin, gum acacia, and pea fiber.
    Koecher KJ; Noack JA; Timm DA; Klosterbuer AS; Thomas W; Slavin JL
    J Agric Food Chem; 2014 Feb; 62(6):1332-7. PubMed ID: 24446899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of konjac glucomannan by enzymes in human feces and formation of short-chain fatty acids by intestinal anaerobic bacteria.
    Matsuura Y
    J Nutr Sci Vitaminol (Tokyo); 1998 Jun; 44(3):423-36. PubMed ID: 9742462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.