BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 22149628)

  • 21. Dietary fiber for cats: in vitro fermentation of selected fiber sources by cat fecal inoculum and in vivo utilization of diets containing selected fiber sources and their blends.
    Sunvold GD; Fahey GC; Merchen NR; Bourquin LD; Titgemeyer EC; Bauer LL; Reinhart GA
    J Anim Sci; 1995 Aug; 73(8):2329-39. PubMed ID: 8567470
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of konjac glucomannan, inulin and cellulose on acute colonic responses to genotoxic azoxymethane.
    Wu WT; Yang LC; Chen HL
    Food Chem; 2014 Jul; 155():304-10. PubMed ID: 24594189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro fermentation characteristics of a mixture of Raftilose and guar gum by human faecal bacteria.
    Khan KM; Edwards CA
    Eur J Nutr; 2005 Sep; 44(6):371-6. PubMed ID: 15526209
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibitory effects of a soluble dietary fiber from Amorphophallus konjac on cytotoxicity and DNA damage induced by fecal water in Caco-2 cells.
    Yeh SL; Lin MS; Chen HL
    Planta Med; 2007 Oct; 73(13):1384-8. PubMed ID: 17893827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deacetylated Konjac Glucomannan Is Less Effective in Reducing Dietary-Induced Hyperlipidemia and Hepatic Steatosis in C57BL/6 Mice.
    Li MY; Feng GP; Wang H; Yang RL; Xu Z; Sun YM
    J Agric Food Chem; 2017 Mar; 65(8):1556-1565. PubMed ID: 28169529
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of dietary fiber fermentation from cereal grains on metabolite production by the fecal microbiota from normal weight and obese individuals.
    Yang J; Keshavarzian A; Rose DJ
    J Med Food; 2013 Sep; 16(9):862-7. PubMed ID: 24044495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Short-chain fatty acids and inulin, but not guar gum, prevent diet-induced obesity and insulin resistance through differential mechanisms in mice.
    Weitkunat K; Stuhlmann C; Postel A; Rumberger S; Fankhänel M; Woting A; Petzke KJ; Gohlke S; Schulz TJ; Blaut M; Klaus S; Schumann S
    Sci Rep; 2017 Jul; 7(1):6109. PubMed ID: 28733671
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The short-chain fatty acid uptake fluxes by mice on a guar gum supplemented diet associate with amelioration of major biomarkers of the metabolic syndrome.
    den Besten G; Havinga R; Bleeker A; Rao S; Gerding A; van Eunen K; Groen AK; Reijngoud DJ; Bakker BM
    PLoS One; 2014; 9(9):e107392. PubMed ID: 25203112
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly viscous guar gum shifts dietary amino acids from metabolic use to fermentation substrate in domestic cats.
    Rochus K; Janssens GP; Van de Velde H; Verbrugghe A; Wuyts B; Vanhaecke L; Hesta M
    Br J Nutr; 2013 Mar; 109(6):1022-30. PubMed ID: 22877608
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of Glycosidic Bond Configuration on Short Chain Fatty Acid Production from Model Fermentable Carbohydrates by the Human Gut Microbiota.
    Harris HC; Edwards CA; Morrison DJ
    Nutrients; 2017 Jan; 9(1):. PubMed ID: 28045429
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in vitro colon model.
    Nordlund E; Aura AM; Mattila I; Kössö T; Rouau X; Poutanen K
    J Agric Food Chem; 2012 Aug; 60(33):8134-45. PubMed ID: 22731123
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temporal and spatial regulation of glucomannan deposition and mobilization in corms of Amorphophallus konjac (Araceae).
    Chua M; Hocking TJ; Chan K; Baldwin TC
    Am J Bot; 2013 Feb; 100(2):337-45. PubMed ID: 23347975
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production.
    Yang J; Martínez I; Walter J; Keshavarzian A; Rose DJ
    Anaerobe; 2013 Oct; 23():74-81. PubMed ID: 23831725
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Konjac acts as a natural laxative by increasing stool bulk and improving colonic ecology in healthy adults.
    Chen HL; Cheng HC; Liu YJ; Liu SY; Wu WT
    Nutrition; 2006; 22(11-12):1112-9. PubMed ID: 17027233
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care.
    Behera SS; Ray RC
    Int J Biol Macromol; 2016 Nov; 92():942-956. PubMed ID: 27481345
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Vitro Fermentation Patterns of Rice Bran Components by Human Gut Microbiota.
    Pham T; Teoh KT; Savary BJ; Chen MH; McClung A; Lee SO
    Nutrients; 2017 Nov; 9(11):. PubMed ID: 29137150
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of konjac glucomannan on putative risk factors for colon carcinogenesis in rats fed a high-fat diet.
    Wu WT; Chen HL
    J Agric Food Chem; 2011 Feb; 59(3):989-94. PubMed ID: 21208006
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of dietary fibers with different fermentation characteristics on feeding motivation in adult female pigs.
    Souza da Silva C; Bolhuis JE; Gerrits WJ; Kemp B; van den Borne JJ
    Physiol Behav; 2013 Feb; 110-111():148-57. PubMed ID: 23313406
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of human faecal donor on in vitro fermentation variables.
    McBurney MI; Thompson LU
    Scand J Gastroenterol; 1989 Apr; 24(3):359-67. PubMed ID: 2544024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of konjac glucomannan with different molecular weights on gut microflora with antibiotic perturbance in in vitro fecal fermentation.
    Mao YH; Xu YX; Li YH; Cao J; Song FL; Zhao D; Zhao Y; Wang ZM; Yang Y
    Carbohydr Polym; 2021 Dec; 273():118546. PubMed ID: 34560958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.