These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Exponential probe rotation in glass-forming liquids. Wang LM; Richert R J Chem Phys; 2004 Jun; 120(23):11082-9. PubMed ID: 15268138 [TBL] [Abstract][Full Text] [Related]
4. On enhanced translational diffusion or the fractional Stokes-Einstein relation observed in a supercooled ionic liquid. Ngai KL J Phys Chem B; 2006 Dec; 110(51):26211-4. PubMed ID: 17181278 [TBL] [Abstract][Full Text] [Related]
5. Probe dependence of spatially heterogeneous dynamics in supercooled glycerol as revealed by single molecule microscopy. Mackowiak SA; Leone LM; Kaufman LJ Phys Chem Chem Phys; 2011 Feb; 13(5):1786-99. PubMed ID: 21113537 [TBL] [Abstract][Full Text] [Related]
6. On the validity of Stokes-Einstein and Stokes-Einstein-Debye relations in ionic liquids and ionic-liquid mixtures. Köddermann T; Ludwig R; Paschek D Chemphyschem; 2008 Sep; 9(13):1851-8. PubMed ID: 18752221 [TBL] [Abstract][Full Text] [Related]
7. Distribution of diffusion constants and Stokes-Einstein violation in supercooled liquids. Sengupta S; Karmakar S J Chem Phys; 2014 Jun; 140(22):224505. PubMed ID: 24929405 [TBL] [Abstract][Full Text] [Related]
8. Heterogeneity in single-molecule observables in the study of supercooled liquids. Kaufman LJ Annu Rev Phys Chem; 2013; 64():177-200. PubMed ID: 23245521 [TBL] [Abstract][Full Text] [Related]
11. Translational dynamics of a rod-like probe in supercooled liquids: an experimentally realizable method to study Stokes-Einstein breakdown, dynamic heterogeneity, and amorphous order. Mutneja A; Karmakar S Soft Matter; 2021 Jun; 17(23):5738-5746. PubMed ID: 34018543 [TBL] [Abstract][Full Text] [Related]
12. Slow dynamics, dynamic heterogeneities, and fragility of supercooled liquids confined in random media. Kim K; Miyazaki K; Saito S J Phys Condens Matter; 2011 Jun; 23(23):234123. PubMed ID: 21613691 [TBL] [Abstract][Full Text] [Related]
13. Translational diffusion in sucrose benzoate near the glass transition: probe size dependence in the breakdown of the Stokes-Einstein equation. Rajian JR; Quitevis EL J Chem Phys; 2007 Jun; 126(22):224506. PubMed ID: 17581062 [TBL] [Abstract][Full Text] [Related]
14. Solvation dynamics and electric field relaxation in an imidazolium-PF6 ionic liquid: from room temperature to the glass transition. Ito N; Richert R J Phys Chem B; 2007 May; 111(18):5016-22. PubMed ID: 17474705 [TBL] [Abstract][Full Text] [Related]
16. Brownian Motion of Molecular Probes in Supercooled Liquids. Liu Q; Huang S; Suo Z Phys Rev Lett; 2015 Jun; 114(22):224301. PubMed ID: 26196623 [TBL] [Abstract][Full Text] [Related]
17. How Is Diffusion of Neutral and Charged Tracers Related to the Structure and Dynamics of a Room-Temperature Ionic Liquid? Large Deviations from Stokes-Einstein Behavior Explained. Araque JC; Yadav SK; Shadeck M; Maroncelli M; Margulis CJ J Phys Chem B; 2015 Jun; 119(23):7015-29. PubMed ID: 25811753 [TBL] [Abstract][Full Text] [Related]
18. Computational probes of molecular motion in the Lewis-Wahnstrom model for ortho-terphenyl. Lombardo TG; Debenedetti PG; Stillinger FH J Chem Phys; 2006 Nov; 125(17):174507. PubMed ID: 17100454 [TBL] [Abstract][Full Text] [Related]
19. Exploring the validity of the Stokes-Einstein relation in supercooled water using nanomolecular probes. Berkowicz S; Perakis F Phys Chem Chem Phys; 2021 Nov; 23(45):25490-25499. PubMed ID: 34494639 [TBL] [Abstract][Full Text] [Related]
20. The fractional Stokes-Einstein equation: application to Lennard-Jones, molecular, and ionic liquids. Harris KR J Chem Phys; 2009 Aug; 131(5):054503. PubMed ID: 19673570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]