These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. The influence of transition metal oxides on the kinetics of Li2O2 oxidation in Li-O2 batteries: high activity of chromium oxides. Yao KP; Lu YC; Amanchukwu CV; Kwabi DG; Risch M; Zhou J; Grimaud A; Hammond PT; Bardé F; Shao-Horn Y Phys Chem Chem Phys; 2014 Feb; 16(6):2297-304. PubMed ID: 24352578 [TBL] [Abstract][Full Text] [Related]
24. Mechanistic Evaluation of LixOy Formation on δ-MnO2 in Nonaqueous Li-Air Batteries. Liu Z; De Jesus LR; Banerjee S; Mukherjee PP ACS Appl Mater Interfaces; 2016 Sep; 8(35):23028-36. PubMed ID: 27532334 [TBL] [Abstract][Full Text] [Related]
25. The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation. Cherkashinin G; Nikolowski K; Ehrenberg H; Jacke S; Dimesso L; Jaegermann W Phys Chem Chem Phys; 2012 Sep; 14(35):12321-31. PubMed ID: 22858824 [TBL] [Abstract][Full Text] [Related]
26. A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide. Xia C; Kwok CY; Nazar LF Science; 2018 Aug; 361(6404):777-781. PubMed ID: 30139868 [TBL] [Abstract][Full Text] [Related]
27. A low-overpotential potassium-oxygen battery based on potassium superoxide. Ren X; Wu Y J Am Chem Soc; 2013 Feb; 135(8):2923-6. PubMed ID: 23402300 [TBL] [Abstract][Full Text] [Related]
28. A reversible and higher-rate Li-O2 battery. Peng Z; Freunberger SA; Chen Y; Bruce PG Science; 2012 Aug; 337(6094):563-6. PubMed ID: 22821984 [TBL] [Abstract][Full Text] [Related]
29. Promoting Solution Discharge of Li-O Liu Z; Ma L; Guo L; Peng Z J Phys Chem Lett; 2018 Oct; 9(20):5915-5920. PubMed ID: 30256112 [TBL] [Abstract][Full Text] [Related]
31. Mechanistic insights for the development of Li-O2 battery materials: addressing Li2O2 conductivity limitations and electrolyte and cathode instabilities. McCloskey BD; Burke CM; Nichols JE; Renfrew SE Chem Commun (Camb); 2015 Aug; 51(64):12701-15. PubMed ID: 26179598 [TBL] [Abstract][Full Text] [Related]
32. Operando observation of the gold-electrolyte interface in Li-O2 batteries. Gittleson FS; Ryu WH; Taylor AD ACS Appl Mater Interfaces; 2014 Nov; 6(21):19017-25. PubMed ID: 25318060 [TBL] [Abstract][Full Text] [Related]
33. The carbon electrode in nonaqueous Li-O2 cells. Ottakam Thotiyl MM; Freunberger SA; Peng Z; Bruce PG J Am Chem Soc; 2013 Jan; 135(1):494-500. PubMed ID: 23190204 [TBL] [Abstract][Full Text] [Related]
34. TEMPO: a mobile catalyst for rechargeable Li-O₂ batteries. Bergner BJ; Schürmann A; Peppler K; Garsuch A; Janek J J Am Chem Soc; 2014 Oct; 136(42):15054-64. PubMed ID: 25255228 [TBL] [Abstract][Full Text] [Related]
35. Rechargeability of Li-air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li-air cells. Meini S; Tsiouvaras N; Schwenke KU; Piana M; Beyer H; Lange L; Gasteiger HA Phys Chem Chem Phys; 2013 Jul; 15(27):11478-93. PubMed ID: 23748698 [TBL] [Abstract][Full Text] [Related]
36. Tuning the Morphology and Crystal Structure of Li2O2: A Graphene Model Electrode Study for Li-O2 Battery. Yang Y; Zhang T; Wang X; Chen L; Wu N; Liu W; Lu H; Xiao L; Fu L; Zhuang L ACS Appl Mater Interfaces; 2016 Aug; 8(33):21350-7. PubMed ID: 27459128 [TBL] [Abstract][Full Text] [Related]
37. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2. Yabuuchi N; Yoshii K; Myung ST; Nakai I; Komaba S J Am Chem Soc; 2011 Mar; 133(12):4404-19. PubMed ID: 21375288 [TBL] [Abstract][Full Text] [Related]
38. Evolution of Li2O2 growth and its effect on kinetics of Li-O2 batteries. Xia C; Waletzko M; Chen L; Peppler K; Klar PJ; Janek J ACS Appl Mater Interfaces; 2014 Aug; 6(15):12083-92. PubMed ID: 25006701 [TBL] [Abstract][Full Text] [Related]
39. Li-O2 battery with a dimethylformamide electrolyte. Chen Y; Freunberger SA; Peng Z; Bardé F; Bruce PG J Am Chem Soc; 2012 May; 134(18):7952-7. PubMed ID: 22515410 [TBL] [Abstract][Full Text] [Related]
40. Dominant Decomposition Pathways for Ethereal Solvents in Li-O2 Batteries. García JM; Horn HW; Rice JE J Phys Chem Lett; 2015 May; 6(10):1795-9. PubMed ID: 26263250 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]