BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22149809)

  • 1. Capillary filling with giant liquid/solid slip: dynamics of water uptake by carbon nanotubes.
    Joly L
    J Chem Phys; 2011 Dec; 135(21):214705. PubMed ID: 22149809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultralow liquid/solid friction in carbon nanotubes: comprehensive theory for alcohols, alkanes, OMCTS, and water.
    Falk K; Sedlmeier F; Joly L; Netz RR; Bocquet L
    Langmuir; 2012 Oct; 28(40):14261-72. PubMed ID: 22974715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2012 Jan; 136(2):024705. PubMed ID: 22260608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How fast does water flow in carbon nanotubes?
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2013 Mar; 138(9):094701. PubMed ID: 23485316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary rise in nanopores: molecular dynamics evidence for the Lucas-Washburn equation.
    Dimitrov DI; Milchev A; Binder K
    Phys Rev Lett; 2007 Aug; 99(5):054501. PubMed ID: 17930760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous capillary filling and wettability reversal in nanochannels.
    Gravelle S; Ybert C; Bocquet L; Joly L
    Phys Rev E; 2016 Mar; 93(3):033123. PubMed ID: 27078463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-surface viscosity effects on capillary rise of water in nanotubes.
    Vo TQ; Barisik M; Kim B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053009. PubMed ID: 26651781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of water filling the hydrophobic channels of narrow carbon nanotubes studied by molecular dynamics simulations.
    Wu K; Zhou B; Xiu P; Qi W; Wan R; Fang H
    J Chem Phys; 2010 Nov; 133(20):204702. PubMed ID: 21133447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of the water flow velocity through carbon nanotubes resulting from the radius dependence of the friction due to electron excitations.
    Sokoloff JB
    Phys Rev E; 2018 Mar; 97(3-1):033107. PubMed ID: 29776023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Friction and slip at the solid/liquid interface in vibrational systems.
    Huang K; Szlufarska I
    Langmuir; 2012 Dec; 28(50):17302-12. PubMed ID: 23157613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modified Lucas-Washburn theory for fluid filling in nanotubes.
    Heiranian M; Aluru NR
    Phys Rev E; 2022 May; 105(5-2):055105. PubMed ID: 35706303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slip flow in graphene nanochannels.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2011 Oct; 135(14):144701. PubMed ID: 22010725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomalous Capillary Rise under Nanoconfinement: A View of Molecular Kinetic Theory.
    Feng D; Li X; Wang X; Li J; Zhang T; Sun Z; He M; Liu Q; Qin J; Han S; Hu J
    Langmuir; 2018 Jul; 34(26):7714-7725. PubMed ID: 29889541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of capillary absorption of droplets by carbon nanotubes.
    Schebarchov D; Hendy SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046309. PubMed ID: 18999528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular transport and flow past hard and soft surfaces: computer simulation of model systems.
    Léonforte F; Servantie J; Pastorino C; Müller M
    J Phys Condens Matter; 2011 May; 23(18):184105. PubMed ID: 21508476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake and withdrawal of droplets from carbon nanotubes.
    Schebarchov D; Hendy SC
    Nanoscale; 2011 Jan; 3(1):134-41. PubMed ID: 20877790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of capillary rise experiments in nanotubes coated with polymer brushes.
    Dimitrov DI; Milchev A; Binder K
    Langmuir; 2008 Feb; 24(4):1232-9. PubMed ID: 17918870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel and global approach of the complex and interconnected phenomena related to the contact line movement past a solid surface from hydrophobized silica gel.
    Suciu CV; Iwatsubo T; Yaguchi K; Ikenaga M
    J Colloid Interface Sci; 2005 Mar; 283(1):196-214. PubMed ID: 15694440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of fluid slip in cylindrical nanopores using equilibrium molecular simulations.
    Sam A; Hartkamp R; Kannam SK; Sathian SP
    Nanotechnology; 2018 Nov; 29(48):485404. PubMed ID: 30207542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early regimes of capillary filling.
    Das S; Waghmare PR; Mitra SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):067301. PubMed ID: 23368085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.