These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22149809)

  • 21. Molecular dynamics of transient oil flows in nanopores. II. Density profiles and molecular structure for decane in carbon nanotubes.
    Supple S; Quirke N
    J Chem Phys; 2005 Mar; 122(10):104706. PubMed ID: 15836344
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A many-body dissipative particle dynamics study of spontaneous capillary imbibition and drainage.
    Chen C; Gao C; Zhuang L; Li X; Wu P; Dong J; Lu J
    Langmuir; 2010 Jun; 26(12):9533-8. PubMed ID: 20225880
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular dynamics analysis of the velocity slip of a water and methanol liquid mixture.
    Nakaoka S; Yamaguchi Y; Omori T; Kagawa M; Nakajima T; Fujimura H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022402. PubMed ID: 26382411
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular dynamics of transient oil flows in nanopores I: Imbibition speeds for single wall carbon nanotubes.
    Supple S; Quirke N
    J Chem Phys; 2004 Nov; 121(17):8571-9. PubMed ID: 15511182
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions.
    Arienti M; Pan W; Li X; Karniadakis G
    J Chem Phys; 2011 May; 134(20):204114. PubMed ID: 21639431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Capillary rise of water in hydrophilic nanopores.
    Gruener S; Hofmann T; Wallacher D; Kityk AV; Huber P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):067301. PubMed ID: 19658631
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aqueous electrolytes near hydrophobic surfaces: dynamic effects of ion specificity and hydrodynamic slip.
    Huang DM; Cottin-Bizonne C; Ybert C; Bocquet L
    Langmuir; 2008 Feb; 24(4):1442-50. PubMed ID: 18052395
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Water filling of hydrophilic nanopores.
    de la Llave E; Molinero V; Scherlis DA
    J Chem Phys; 2010 Jul; 133(3):034513. PubMed ID: 20649343
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Slip effects in polymer thin films.
    Bäumchen O; Jacobs K
    J Phys Condens Matter; 2010 Jan; 22(3):033102. PubMed ID: 21386275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dependence between velocity slip and temperature jump in shear flows.
    Sun J; Wang W; Wang HS
    J Chem Phys; 2013 Jun; 138(23):234703. PubMed ID: 23802972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interfacial slip friction at a fluid-solid cylindrical boundary.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2012 Jun; 136(24):244704. PubMed ID: 22755596
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Commensurability Effects in Viscosity of Nanoconfined Water.
    Neek-Amal M; Peeters FM; Grigorieva IV; Geim AK
    ACS Nano; 2016 Mar; 10(3):3685-92. PubMed ID: 26882095
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Friction of water slipping in carbon nanotubes.
    Ma MD; Shen L; Sheridan J; Liu JZ; Chen C; Zheng Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036316. PubMed ID: 21517596
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Early regimes of water capillary flow in slit silica nanochannels.
    Oyarzua E; Walther JH; Mejía A; Zambrano HA
    Phys Chem Chem Phys; 2015 Jun; 17(22):14731-9. PubMed ID: 25976034
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Statics and dynamics of a cylindrical droplet under an external body force.
    Servantie J; Müller M
    J Chem Phys; 2008 Jan; 128(1):014709. PubMed ID: 18190214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport of a liquid water and methanol mixture through carbon nanotubes under a chemical potential gradient.
    Zheng J; Lennon EM; Tsao HK; Sheng YJ; Jiang S
    J Chem Phys; 2005 Jun; 122(21):214702. PubMed ID: 15974757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theory and simulations of water flow through carbon nanotubes: prospects and pitfalls.
    Bonthuis DJ; Rinne KF; Falk K; Nadir Kaplan C; Horinek D; Nihat Berker A; Bocquet L; Netz RR
    J Phys Condens Matter; 2011 May; 23(18):184110. PubMed ID: 21508478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Capillary Displacement of Viscous Liquids.
    Walls PL; Dequidt G; Bird JC
    Langmuir; 2016 Apr; 32(13):3186-90. PubMed ID: 26974014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Filling of charged cylindrical capillaries.
    Das S; Chanda S; Eijkel JC; Tas NR; Chakraborty S; Mitra SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043011. PubMed ID: 25375597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.