These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22149809)

  • 41. How boundary slip controls emergent Darcy flow of liquids in tortuous and in capillary pores.
    Singh K
    Phys Rev E; 2020 Jul; 102(1-1):013101. PubMed ID: 32794951
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamic wetting at the nanoscale.
    Nakamura Y; Carlson A; Amberg G; Shiomi J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033010. PubMed ID: 24125347
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Finite system size effects in the interfacial dynamics of binary liquid films.
    Thakre AK; Padding JT; den Otter WK; Briels WJ
    J Chem Phys; 2008 Jul; 129(4):044701. PubMed ID: 18681664
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A note on the effects of liquid viscoelasticity and wall slip on foam drainage.
    Bertola V
    J Phys Condens Matter; 2007 Jun; 19(24):246105. PubMed ID: 21694041
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prediction of fluid velocity slip at solid surfaces.
    Hansen JS; Todd BD; Daivis PJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016313. PubMed ID: 21867310
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of an external electric field on capillary filling of water in hydrophilic silica nanochannels.
    Karna NK; Rojano Crisson A; Wagemann E; Walther JH; Zambrano HA
    Phys Chem Chem Phys; 2018 Jul; 20(27):18262-18270. PubMed ID: 29953159
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Forced imbibition-a tool for separate determination of Laplace pressure and drag force in capillary filling experiments.
    Dimitrov DI; Milchev A; Binder K
    Phys Chem Chem Phys; 2008 Apr; 10(14):1867-9. PubMed ID: 18368178
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spontaneous Penetration of Liquids into Capillaries and Porous Membranes Revisited.
    Kornev KG; Neimark AV
    J Colloid Interface Sci; 2001 Mar; 235(1):101-113. PubMed ID: 11237448
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modeling of spontaneous penetration of viscoelastic fluids and biofluids into capillaries.
    Kornev KG; Neimark AV
    J Colloid Interface Sci; 2003 Jun; 262(1):253-62. PubMed ID: 16256602
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Temperature and size effects on diffusion in carbon nanotubes.
    Jakobtorweihen S; Keil FJ; Smit B
    J Phys Chem B; 2006 Aug; 110(33):16332-6. PubMed ID: 16913760
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Water Flow in Single-Wall Nanotubes: Oxygen Makes It Slip, Hydrogen Makes It Stick.
    Thiemann FL; Schran C; Rowe P; Müller EA; Michaelides A
    ACS Nano; 2022 Jul; 16(7):10775-10782. PubMed ID: 35726839
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of endohedral water on diameter sorting of single-walled carbon nanotubes by density gradient centrifugation.
    Quintillá A; Hennrich F; Lebedkin S; Kappes MM; Wenzel W
    Phys Chem Chem Phys; 2010 Jan; 12(4):902-8. PubMed ID: 20066375
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Formation of ordered ice nanotubes inside carbon nanotubes.
    Koga K; Gao GT; Tanaka H; Zeng XC
    Nature; 2001 Aug; 412(6849):802-5. PubMed ID: 11518961
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods.
    Page AJ; Ohta Y; Irle S; Morokuma K
    Acc Chem Res; 2010 Oct; 43(10):1375-85. PubMed ID: 20954752
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion.
    Sendner C; Horinek D; Bocquet L; Netz RR
    Langmuir; 2009 Sep; 25(18):10768-81. PubMed ID: 19591481
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Contact line motion in confined liquid-gas systems: Slip versus phase transition.
    Xu X; Qian T
    J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Water conduction through the hydrophobic channel of a carbon nanotube.
    Hummer G; Rasaiah JC; Noworyta JP
    Nature; 2001 Nov; 414(6860):188-90. PubMed ID: 11700553
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamics of imbibition into a pore with a heterogeneous surface.
    Martic G; Blake TD; De Coninck J
    Langmuir; 2005 Nov; 21(24):11201-7. PubMed ID: 16285791
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of wall roughness on fluid transport resistance in nanopores.
    Xu B; Li Y; Park T; Chen X
    J Chem Phys; 2011 Oct; 135(14):144703. PubMed ID: 22010727
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A method to determine zeta potential and Navier slip coefficient of microchannels.
    Park HM
    J Colloid Interface Sci; 2010 Jul; 347(1):132-41. PubMed ID: 20362996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.