These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22149809)

  • 61. Molecular theory of hydrodynamic boundary conditions in nanofluidics.
    Kobryn AE; Kovalenko A
    J Chem Phys; 2008 Oct; 129(13):134701. PubMed ID: 19045110
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Flow structure of water in carbon nanotubes: poiseuille type or plug-like?
    Hanasaki I; Nakatani A
    J Chem Phys; 2006 Apr; 124(14):144708. PubMed ID: 16626232
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Negative effect of nanoconfinement on water transport across nanotube membranes.
    Zhao K; Wu H; Han B
    J Chem Phys; 2017 Oct; 147(16):164705. PubMed ID: 29096476
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Numerical simulation of the spontaneous penetration of liquids into cylindrical capillaries.
    Fick AD; Borhan A
    Ann N Y Acad Sci; 2006 Sep; 1077():426-42. PubMed ID: 17124139
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Different regimes in vertical capillary filling.
    Das S; Mitra SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063005. PubMed ID: 23848770
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Filling kinetics of liquids in nanochannels as narrow as 27 nm by capillary force.
    Han A; Mondin G; Hegelbach NG; de Rooij NF; Staufer U
    J Colloid Interface Sci; 2006 Jan; 293(1):151-7. PubMed ID: 16023663
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Extending the Classical Continuum Theory to Describe Water Flow through Two-Dimensional Nanopores.
    Sun C; Zhou R; Zhao Z; Bai B
    Langmuir; 2021 May; 37(20):6158-6167. PubMed ID: 33969992
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of charge on water filling/emptying transitions of nanochannel.
    Lu H; Zhou X; Wu F; Xu Y
    J Phys Chem B; 2008 Dec; 112(51):16777-81. PubMed ID: 19367816
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Capillary climb dynamics in the limits of prevailing capillary and gravity force.
    Bijeljic B; Markicevic B; Navaz HK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056310. PubMed ID: 21728650
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Self-diffusion of water and simple alcohols in single-walled aluminosilicate nanotubes.
    Zang J; Konduri S; Nair S; Sholl DS
    ACS Nano; 2009 Jun; 3(6):1548-56. PubMed ID: 19545168
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Influence of cyclohexane vapor on stick-slip friction between mica surfaces.
    Ohnishi S; Kaneko D; Gong JP; Osada Y; Stewart AM; Yaminsky VV
    Langmuir; 2007 Jun; 23(13):7032-8. PubMed ID: 17518483
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Giant slip length at a supercooled liquid-solid interface.
    Lafon S; Chennevière A; Restagno F; Merabia S; Joly L
    Phys Rev E; 2023 Feb; 107(2-2):025101. PubMed ID: 36932489
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Molecular diffusion and slip boundary conditions at smooth surfaces with periodic and random nanoscale textures.
    Priezjev NV
    J Chem Phys; 2011 Nov; 135(20):204704. PubMed ID: 22128949
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Fault rheology beyond frictional melting.
    Lavallée Y; Hirose T; Kendrick JE; Hess KU; Dingwell DB
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9276-80. PubMed ID: 26124123
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effect of intrinsic angular momentum in the capillary filling dynamics of viscous fluids.
    Gheshlaghi B; Nazaripoor H; Kumar A; Sadrzadeh M
    J Colloid Interface Sci; 2016 Oct; 479():80-86. PubMed ID: 27376971
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effect of quantum partial charges on the structure and dynamics of water in single-walled carbon nanotubes.
    Won CY; Joseph S; Aluru NR
    J Chem Phys; 2006 Sep; 125(11):114701. PubMed ID: 16999495
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Can we predict the spreading of a two-liquid system from the spreading of the corresponding liquid-air systems?
    Goossens S; Seveno D; Rioboo R; Vaillant A; Conti J; De Coninck J
    Langmuir; 2011 Aug; 27(16):9866-72. PubMed ID: 21682265
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Filling and emptying transitions in cylindrical channels: a density functional approach.
    Husowitz B; Talanquer V
    J Chem Phys; 2007 Jun; 126(22):224703. PubMed ID: 17581076
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Water in carbon nanotubes: adsorption isotherms and thermodynamic properties from molecular simulation.
    Striolo A; Chialvo AA; Gubbins KE; Cummings PT
    J Chem Phys; 2005 Jun; 122(23):234712. PubMed ID: 16008478
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Electric field and temperature effects on water in the narrow nonpolar pores of carbon nanotubes.
    Vaitheeswaran S; Rasaiah JC; Hummer G
    J Chem Phys; 2004 Oct; 121(16):7955-65. PubMed ID: 15485258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.