These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 22149823)

  • 1. Pitfalls of tungsten multileaf collimator in proton beam therapy.
    Moskvin V; Cheng CW; Das IJ
    Med Phys; 2011 Dec; 38(12):6395-406. PubMed ID: 22149823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of secondary neutron dose in proton therapy resulting from the use of a tungsten alloy MLC or a brass collimator system.
    Diffenderfer ES; Ainsley CG; Kirk ML; McDonough JE; Maughan RL
    Med Phys; 2011 Nov; 38(11):6248-56. PubMed ID: 22047390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle selection and beam collimation system for laser-accelerated proton beam therapy.
    Luo W; Fourkal E; Li J; Ma CM
    Med Phys; 2005 Mar; 32(3):794-806. PubMed ID: 15839352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a mini-multileaf collimator in a proton beamline.
    Daartz J; Bangert M; Bussière MR; Engelsman M; Kooy HM
    Med Phys; 2009 May; 36(5):1886-94. PubMed ID: 19544808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of the secondary neutral radiation in proton therapy: toward an indirect in vivo dosimetry.
    Carnicer A; Letellier V; Rucka G; Angellier G; Sauerwein W; Herault J
    Med Phys; 2012 Dec; 39(12):7303-16. PubMed ID: 23231280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary neutron doses for several beam configurations for proton therapy.
    Shin D; Yoon M; Kwak J; Shin J; Lee SB; Park SY; Park S; Kim DY; Cho KH
    Int J Radiat Oncol Biol Phys; 2009 May; 74(1):260-5. PubMed ID: 19362245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attenuation and activation characteristics of steel and tungsten and the suitability of these materials for use in a fast neutron multileaf collimator.
    Maughan RL; Yudelev M; Forman JD; Williams SB; Gries D; Fletcher TM; Chapman W; Blosser EJ; Horste T
    Med Phys; 2001 Jun; 28(6):1006-9. PubMed ID: 11439469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of the mechanical collimation for minibeam generation in proton minibeam radiation therapy.
    Guardiola C; Peucelle C; Prezado Y
    Med Phys; 2017 Apr; 44(4):1470-1478. PubMed ID: 28129665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo modeling and simulations of the High Definition (HD120) micro MLC and validation against measurements for a 6 MV beam.
    Borges C; Zarza-Moreno M; Heath E; Teixeira N; Vaz P
    Med Phys; 2012 Jan; 39(1):415-23. PubMed ID: 22225311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of secondary neutron dose for 18 MV dynamic MLC IMRT delivery.
    Howell RM; Ferenci MS; Hertel NE; Fullerton GD
    Med Phys; 2005 Mar; 32(3):786-93. PubMed ID: 15839351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo simulation of a 2D dynamic multileaf collimator to improve the plan quality in radiotherapy plan: a proof-of-concept study.
    Park H; Choi HJ; Hee Min C; Kim JI
    Phys Med Biol; 2019 Dec; 64(24):245009. PubMed ID: 31726432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo investigation of collimator scatter of proton-therapy beams produced using the passive scattering method.
    Titt U; Zheng Y; Vassiliev ON; Newhauser WD
    Phys Med Biol; 2008 Jan; 53(2):487-504. PubMed ID: 18185001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurements of neutron dose equivalent for a proton therapy center using uniform scanning proton beams.
    Zheng Y; Liu Y; Zeidan O; Schreuder AN; Keole S
    Med Phys; 2012 Jun; 39(6):3484-92. PubMed ID: 22755728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulations of neutron spectral fluence, radiation weighting factor and ambient dose equivalent for a passively scattered proton therapy unit.
    Zheng Y; Fontenot J; Taddei P; Mirkovic D; Newhauser W
    Phys Med Biol; 2008 Jan; 53(1):187-201. PubMed ID: 18182696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of dose perturbations induced by external and internal accessories in ocular proton therapy and evaluation of their dosimetric impact.
    Carnicer A; Angellier G; Thariat J; Sauerwein W; Caujolle JP; Hérault J
    Med Phys; 2013 Jun; 40(6):061708. PubMed ID: 23718587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and commissioning of the non-dedicated scanning proton beamline for ocular treatment at the synchrotron-based CNAO facility.
    Ciocca M; Magro G; Mastella E; Mairani A; Mirandola A; Molinelli S; Russo S; Vai A; Fiore MR; Mosci C; Valvo F; Via R; Baroni G; Orecchia R
    Med Phys; 2019 Apr; 46(4):1852-1862. PubMed ID: 30659616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Neutron Production in Passively Scattered Ion-Beam Therapy.
    Heo S; Yoo S; Song Y; Kim E; Shin J; Han S; Jung W; Nam S; Lee R; Lee K; Cho S
    Radiat Prot Dosimetry; 2017 Jul; 175(3):297-303. PubMed ID: 27885084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A topographic leaf-sequencing algorithm for delivering intensity modulated radiation therapy.
    Desai D; Ramsey CR; Breinig M; Mahan SL
    Med Phys; 2006 Aug; 33(8):2751-6. PubMed ID: 16964850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dosimetric evaluation of hybrid brass/stainless-steel apertures for proton therapy.
    Chen H; Matysiak W; Flampouri S; Slopsema R; Li Z
    Phys Med Biol; 2014 Sep; 59(17):5043-60. PubMed ID: 25119333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy.
    Islam MR; Collums TL; Zheng Y; Monson J; Benton ER
    Phys Med Biol; 2013 Nov; 58(22):8235-51. PubMed ID: 24201018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.